Immune recognition of putative alien microbial structures: Host–pathogen interactions in the age of space travel
Autoři:
Mihai G. Netea aff001; Jorge Domínguez-Andrés aff001; Marc Eleveld aff003; Huub J. M. op den Camp aff004; Jos W. M. van der Meer aff001; Neil A. R. Gow aff005; Marien I. de Jonge aff003
Působiště autorů:
Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
aff001; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
aff002; Department of Laboratory Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
aff003; Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, the Netherlands
aff004; School of Biosciences, University of Exeter, Exeter, United Kingdom
aff005
Vyšlo v časopise:
Immune recognition of putative alien microbial structures: Host–pathogen interactions in the age of space travel. PLoS Pathog 16(1): e32767. doi:10.1371/journal.ppat.1008153
Kategorie:
Review
doi:
https://doi.org/10.1371/journal.ppat.1008153
Souhrn
Human space travel is on the verge of visiting Mars and, in the future, even more distant places in the solar system. These journeys will be also made by terrestrial microorganisms (hitchhiking on the bodies of astronauts or on scientific instruments) that, upon arrival, will come into contact with new planetary environments, despite the best measures to prevent contamination. These microorganisms could potentially adapt and grow in the new environments and subsequently recolonize and infect astronauts. An even more challenging situation would be if truly alien microorganisms will be present on these solar system bodies: What will be their pathogenic potential, and how would our immune host defenses react? It will be crucial to anticipate these situations and investigate how the immune system of humans might cope with modified terrestrial or alien microbes. We propose several scenarios that may be encountered and how to respond to these challenges.
Klíčová slova:
Astronauts – Immune system – Mars – Planets – Moons – Solar system – Earth – Meteors
Zdroje
1. Irwin LN, Schulze-Makuch D. Assessing the Plausibility of Life on Other Worlds. Astrobiology. Mary Ann Liebert, Inc.; 2001;1: 143–160. doi: 10.1089/153110701753198918 12467118
2. Margulis L, Guerrero R. Life as a planetary phenomenon: the colonization of Mars. Microbiologia. 1995;11: 173–84. 11539563
3. Reese DE, Swan PR. Venera 4 Probes Atmosphere of Venus. Science (80-). 1968;159: 1228–1230. doi: 10.1126/science.159.3820.1228 17814841
4. Schulze-Makuch D, Irwin LN. Reassessing the Possibility of Life on Venus: Proposal for an Astrobiology Mission. Astrobiology. Mary Ann Liebert, Inc.; 2002;2: 197–202. doi: 10.1089/15311070260192264 12469368
5. Levin G V., Straat PA. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. Astrobiology. 2016;16: 798–810. doi: 10.1089/ast.2015.1464 27626510
6. Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, et al. Radar evidence of subglacial liquid water on Mars. Science (80-). 2018;361: eaar7268. doi: 10.1126/science.aar7268 30045881
7. Carr MH, Belton MJS, Chapman CR, Davies ME, Geissler P, Greenberg R, et al. Evidence for a subsurface ocean on Europa. Nature. 1998;391: 363–365. doi: 10.1038/34857 9450749
8. Parkinson CD, Liang M-C, Yung YL, Kirschivnk JL. Habitability of Enceladus: Planetary Conditions for Life. Orig Life Evol Biosph. 2008;38: 355–369. doi: 10.1007/s11084-008-9135-4 18566911
9. Prangé R, Pallier L, Hansen KC, Howard R, Vourlidas A, Courtin R, et al. An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature. 2004;432: 78–81. doi: 10.1038/nature02986 15525983
10. Shen-Miller J, Schopf JW, Harbottle G, Cao R -j., Ouyang S, Zhou K -s., et al. Long-living lotus: germination and soil -irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring. Am J Bot. 2002;89: 236–247. doi: 10.3732/ajb.89.2.236 21669732
11. Gibson EK, McKay DS, Thomas-Keprta KL, Wentworth SJ, Westall F, Steele A, et al. Life on Mars: evaluation of the evidence within Martian meteorites ALH84001, Nakhla, and Shergotty. Precambrian Res. Elsevier; 2001;106: 15–34. doi: 10.1016/S0301-9268(00)00122-4
12. Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med. 2018;24: 1097–1103. doi: 10.1038/s41591-018-0145-0 30082869
13. Zarecki R, Oberhardt MA, Reshef L, Gophna U, Ruppin E. A novel nutritional predictor links microbial fastidiousness with lowered ubiquity, growth rate, and cooperativeness. PLoS Comput Biol. Public Library of Science; 2014;10: e1003726. doi: 10.1371/journal.pcbi.1003726 25033033
14. Lazcano A. Historical Development of Origins Research. Cold Spring Harb Perspect Biol. 2010;2: a002089–a002089. doi: 10.1101/cshperspect.a002089 20534710
15. Pizzarello S, Shock E. Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life. Orig Life Evol Biosph. 2017;47: 249–260. doi: 10.1007/s11084-016-9530-1 28078499
16. Khare BN, Thompson WR, Chyba CF, Arakawa ET, Sagan C. Organic solids produced from simple C/H/O/N ices by charged particles: applications to the outer solar system. Adv Space Res. 1989;9: 41–53.
17. Agarwal VK, Schutte W, Greenberg JM, Ferris JP, Briggs R, Connor S, et al. Photochemical reactions in interstellar grains photolysis of CO, NH3, and H2O. Orig Life Evol Biosph. 1985;16: 21–40. doi: 10.1007/bf01808047 11542015
18. Moore D. Graviresponses in fungi. Adv Sp Res. 1996;17: 73–82. doi: 10.1016/0273-1177(95)00614-K
19. Moeller R, Reitz G, Berger T, Okayasu R, Nicholson WL, Horneck G. Astrobiological Aspects of the Mutagenesis of Cosmic Radiation on Bacterial Spores. Astrobiology. 2010;10: 509–521. doi: 10.1089/ast.2009.0429 20624059
20. Singh NK, Bezdan D, Checinska Sielaff A, Wheeler K, Mason CE, Venkateswaran K. Multi-drug resistant Enterobacter bugandensis species isolated from the International Space Station and comparative genomic analyses with human pathogenic strains. BMC Microbiol. BioMed Central; 2018;18: 175. doi: 10.1186/s12866-018-1325-2 30466389
21. Klementiev KE, Maksimov EG, Gvozdev DA, Tsoraev GV., Protopopov FF, Elanskaya I V., et al. Radioprotective role of cyanobacterial phycobilisomes. Biochim Biophys Acta—Bioenerg. 2019;1860: 121–128. doi: 10.1016/j.bbabio.2018.11.018 30465750
22. Waite JH, Combi MR, Ip W-H, Cravens TE, McNutt RL, Kasprzak W, et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science. American Association for the Advancement of Science; 2006;311: 1419–22. doi: 10.1126/science.1121290 16527970
23. Waite JH Jr, Lewis WS, Magee BA, Lunine JI, McKinnon WB, Glein CR, et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature. 2009;460: 487–490. doi: 10.1038/nature08153
24. Postberg F, Schmidt J, Hillier J, Kempf S, Srama R. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature. Nature Publishing Group; 2011;474: 620–622. doi: 10.1038/nature10175 21697830
25. Roberts JH, Nimmo F. Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus. 2008;194: 675–689. doi: 10.1016/j.icarus.2007.11.010
26. Jones EG. Shallow transient liquid water environments on present-day mars, and their implications for life. Acta Astronaut. 2018;146: 144–150. doi: 10.1016/j.actaastro.2018.02.027
27. Cabrol NA. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. Astrobiology. 2018;18: 1–27. doi: 10.1089/ast.2017.1756 29252008
28. Stepanek J, Blue RS, Parazynski S. Space Medicine in the Era of Civilian Spaceflight. Longo DL, editor. N Engl J Med. 2019;380: 1053–1060. doi: 10.1056/NEJMra1609012 30865799
29. Taylor GR, Graves RC, Brockett RM, Ferguson JK, Mieszkuc BJ. Skylab environmental and crew microbiology studies. 1977; https://ntrs.nasa.gov/search.jsp?R=19770026844
30. Rooney B V., Crucian BE, Pierson DL, Laudenslager ML, Mehta SK. Herpes Virus Reactivation in Astronauts During Spaceflight and Its Application on Earth. Front Microbiol. Frontiers; 2019;10: 16. doi: 10.3389/fmicb.2019.00016 30792698
31. Cohrs RJ, Mehta SK, Schmid DS, Gilden DH, Pierson DL. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol. 2008;80: 1116–1122. doi: 10.1002/jmv.21173 18428120
32. Mehta SK, Tyring SK, Cohrs RJ, Gilden D, Feiveson AH, Lechler KJ, et al. Rapid and sensitive detection of varicella zoster virus in saliva of patients with herpes zoster. J Virol Methods. NIH Public Access; 2013;193: 128. doi: 10.1016/J.JVIROMET.2013.05.019 23747545
33. Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C. Alterations in adaptive immunity persist during long-duration spaceflight. npj Microgravity. 2015;1: 15013. doi: 10.1038/npjmgrav.2015.13 28725716
34. Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL, et al. Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol. 1999;65: 179–86. doi: 10.1002/jlb.65.2.179 10088600
35. Kaur I, Simons ER, Kapadia AS, Ott CM, Pierson DL. Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin Vaccine Immunol. American Society for Microbiology; 2008;15: 1523–8. doi: 10.1128/CVI.00065-08 18768671
36. Sonnenfeld G, Mandel AD, Konstantinova IV., Berry WD, Taylor GR, Lesnyak AT, et al. Spaceflight alters immune cell function and distribution. J Appl Physiol. 1992;73: S191–S195. doi: 10.1152/jappl.1992.73.2.S191 1526951
37. Ichiki AT, Gibson LA, Jago TL, Strickland KM, Johnson DL, Lange RD, et al. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J Leukoc Biol. 1996;60: 37–43. doi: 10.1002/jlb.60.1.37 8699121
38. Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL. Changes in monocyte functions of astronauts. Brain Behav Immun. 2005;19: 547–554. doi: 10.1016/j.bbi.2004.12.006 15908177
39. Kaur I, Simons ER, Castro VA, Mark Ott C, Pierson DL. Changes in neutrophil functions in astronauts. Brain Behav Immun. 2004;18: 443–450. doi: 10.1016/j.bbi.2003.10.005 15265537
40. Li Q, Mei Q, Huyan T, Xie L, Che S, Yang H, et al. Effects of simulated microgravity on primary human NK cells. Astrobiology. Mary Ann Liebert, Inc.; 2013;13: 703–14. doi: 10.1089/ast.2013.0981 23919749
41. Guéguinou N, Huin-Schohn C, Bascove M, Bueb J-L, Tschirhart E, Legrand-Frossi C, et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J Leukoc Biol. Wiley-Blackwell; 2009;86: 1027–1038. doi: 10.1189/jlb.0309167 19690292
42. Bacher P, Heinrich F, Stervbo U, Nienen M, Vahldieck M, Iwert C, et al. Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans. Cell. 2016;167: 1067–1078.e16. doi: 10.1016/j.cell.2016.09.050 27773482
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- „Jednohubky“ z klinického výzkumu – 2024/44
Nejčtenější v tomto čísle
- Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells
- Hydropic anthelmintics against parasitic nematodes
- Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation
- Modular Mimicry and Engagement of the Hippo Pathway by Marburg Virus VP40: Implications for Filovirus Biology and Budding