Increase in RNASEL gene expression by miR-29-3p inhibitors in HEK293T cells
Autoři:
A. Maleki 1; M. Ravanshad 1; F. Kouhkan 2
Působiště autorů:
Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
1; Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
2
Vyšlo v časopise:
Epidemiol. Mikrobiol. Imunol. 69, 2020, č. 3, s. 116-120
Kategorie:
Původní práce
Souhrn
Background: RNase L is known as a terminal component of antiviral and Interferon (IFN) pathways in mammalian cells. On the other hand, the human miR-29 family of microRNAs (miRs) has three mature members, miR-29a, miR-29b, and miR-29c. miR-29 is encoded by two gene clusters and the family members have multifunctional roles in various biological processes.
Objectives: To determine the potential role of miR-29 in the regulation of RNASEL gene expression by designing inhibitors against its targeting miRNA, miR-29a-3p and evaluate the RNase L expression.
Material and Methods: After selecting miR-29a-3p as a main regulating miRNA for RNASEL in silico, two inhibitors were designed against it and synthesized. Synthesized strands were made double-stranded DNA oligos, treated with T4 polynucleotide kinase (PNK), cloned into the pCDH-CMV-MCS-EF1-cGFP-T2A-Puro vector and transformed into DH5α. Colony PCR and sequencing was done for affirmation. Then the miR-29a-3p inhibitors were transfected into HEK-293T cell line and RNASEL gene expression was analyzed.
Results: The miR-29a-3p inhibitors decreased miR-29a-3p expression in vitro. In addition, miR-29a-3p expression reduction resulted in an increase of RNASEL gene expression.
Conclusions: miR-29a-3p inhibitors could increase in RNASEL gene expression which potentially affects the antiviral/IFN pathway. The inhibitors could be considered as drug candidates in different diseases especially viral infections.
Klíčová slova:
Anti-mir – mir-29a-3p – real-Time pcr – rnase l
Zdroje
1. Lee HJ. Exceptional stories of microRNAs. Experimental Biology and Medicine, 2013;238(4):339–343.
2. Kim VN, Nam JW. Genomics of microRNA. Trends in Genetics, 2006;22(3):165–173.
3. Lin SL, Kim H, Ying SY. Intron-mediated RNA interference and microRNA (miRNA). Front Biosci, 2008;13:2216–2230.
4. Suzuki HI, Miyazono K. Emerging complexity of microRNA genera-tion cascades. Journal of biochemistry. 2011;149(1):15–25.
5. Hwang HW, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. Science, 2007;315(5808):97–100.
6. Ouyang YB, Xu L, Yue S, Liu S, Giffard RG. Neuroprotection by astrocytes in brain ischemia: importance of microRNAs. Neuroscience letters, 2014;565:53–58.
7. Noetel A, Kwiecinski M, Elfimova N, Huang J, Odenthal M. MicroRNA are Central Players in Anti- and Profibrotic Gene Regulation during Liver Fibrosis. Front Physiol, 2012;3:49.
8. Savan R. Post-transcriptional regulation of interferons and their signaling pathways. Journal of Interferon & Cytokine Research, 2014;34(5):318–329.
9. Forster SC, Tate MD, Hertzog PJ. MicroRNA as type I interferon-regulated transcripts and modulators of the innate immune response. Frontiers in immunology, 2015;6.
10. David M. Interferons and microRNAs. Journal of Interferon & Cytokine Research, 2010;30(11):825–828.
11. Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B, et al. The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor. Nat Immunol, 2011;13(2):181–187.
12. Rath S, Donovan J, Whitney G, Chitrakar A, Wang W, Korennykh A. Human RNase L tunes gene expression by selectively destabilizing the microRNA-regulated transcriptome. Proceedings of the National Academy of Sciences, 2015;112(52):15916–15921.
13. Drappier M, Michiels T. Inhibition of the OAS/RNase L pathway by viruses. Current opinion in virology, 2015;15:19–26.
14. Malathi K, Dong B, Gale M, Silverman RH. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature, 2007;448(7155):816–819.
15. Nilsen TW, Baglioni C. Mechanism for discrimination between viral and host mRNA in interferon-treated cells. Proceedings of the National Academy of Sciences, 1979;76(6):2600–2604.
16. Takeda T, Tanabe H. Lifespan and reproduction in brain-specific miR-29-knockdown mouse. Biochem Biophys Res Commun, 2016;471(4):454–458.
17. Song H, Ding L, Zhang S, Wang W. MiR-29 family members interact with SPARC to regulate glucose metabolism. Biochem Biophys Res Commun, 2018;497(2):667–674.
18. Yu D, Green B, Tolleson WH, Jin Y, Mei N, Guo Y, et al. MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochemical pharmacology, 2015;98(1):215–223.
19. Sekiya Y, Ogawa T, Yoshizato K, Ikeda K, Kawada N. Suppression of hepatic stellate cell activation by microRNA-29b. Biochemical and Biophysical Research Communications, 2011;412(1):74–79.
20. Guo J, Lin Q, Shao Y, Rong L, Zhang D. miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway. Canadian Journal of Physiology and Pharmacology, 2016;95(4):437–442.
21. Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol, 2009;16(1):23–29.
22. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife, 2015;4:e05005.
23. Chou CH, Shrestha S, Yang C-D, Chang NW, Lin YL, Liao KW, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic acids research, 2017;46(D1):D296–D302.
24. Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: Similarities and differences. Advanced Drug Delivery Reviews, 2009;61(9):746–759.
25. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Research, 2018;47(D1):D155–D62.
26. Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms for Molecular Biology, 2011;6(1):26.
27. Berkner KL, Folk WR. Polynucleotide kinase exchange reaction: quantitave assay for restriction endonuclease-generated 5’-phosphoroyl termini in DNA. Journal of Biological Chemistry, 1977;252(10):3176–3184.
28. Díaz-Guerra M, Rivas C, Esteban M. Inducible expression of the 2-5A synthetase/RNase L system results in inhibition of vaccinia virus replication. Virology, 1997;227(1):220–228.
29. Nilsen T, Maroney P, Baglioni C. Synthesis of (2’-5’) oligoadenylate and activation of an endoribonuclease in interferon-treated HeLa cells infected with reovirus. Journal of virology. 1982;42(3):1039–1045.
30. Li XL, Blackford JA, Hassel BA. RNase L mediates the antiviral effect of interferon through a selective reduction in viral RNA during encephalomyocarditis virus infection. Journal of virology, 1998;72(4):2752–2759.
31. Chakrabarti A, Ghosh PK, Banerjee S, Gaughan C, Silverman RH. RNase L Triggers Autophagy in Response to Viral Infections. Journal of Virology, 2012;86(20):11311–11321.
32. Al-Ahmadi W, Al-Haj L, Al-Mohanna F, Silverman R, Khabar K. RNase L downmodulation of the RNA-binding protein, HuR, and cellular growth. Oncogene, 2009;28(15):1782.
33. Brennan-Laun SE, Li X-L, Ezelle HJ, Venkataraman T, Blackshear PJ, Wilson GM, et al. RNase-L Attenuates Mitogen-stimulated Gene Expression via Transcriptional and Post-transcriptional Mechanisms to Limit the Proliferative Response. Journal of Biological Chemistry, 2014:jbc. M114. 589556.
34. Cooper DA, Jha BK, Silverman RH, Hesselberth JR, Barton DJ. Ribonuclease L and metal-ion–independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic acids research, 2014;42(8):5202–5216.
35. Lee TY, Ezelle HJ, Venkataraman T, Lapidus RG, Scheibner KA, Hassel BA. Regulation of human RNase-L by the miR-29 family reveals a novel oncogenic role in chronic myelogenous leukemia. Journal of Interferon & Cytokine Research, 2013;33(1):34–42.
36. Hassel B, Hsi T, Ezelle H, Scheibner K. P140 MicroRNA-29 regulation of RNase-L reveals a novel function in oncogenesis. Cytokine, 2012;59(3):565.
37. Li JW, He SY, Feng ZZ, Zhao L, Jia WK, Liu P, et al. MicroRNA--146b inhibition augments hypoxia-induced cardiomyocyte apoptosis. Molecular medicine reports, 2015;12(5):6903–6910.
Štítky
Hygiena a epidemiologie Infekční lékařství MikrobiologieČlánek vyšel v časopise
Epidemiologie, mikrobiologie, imunologie
2020 Číslo 3
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
Nejčtenější v tomto čísle
- Epidemiologie vankomycin-rezistentních enterokoků ve Fakultní nemocnici Hradec Králové v roce 2017
- Koutule skvrnitá – Clogmia albipunctata (Diptera: Psychodidae) – muška s epidemiologickým potenciálem a rizikem myiáz
- Délka vylučování SARS-CoV-2 u pacientů uzdravujících se z COVID-19
- Séroprevalence IgG protilátek proti spalničkám u zaměstnanců Nemocnice Strakonice, a.s.