Human Rhinoviruses A9, A49, B14 and Echovirus 3, 9 among the patients with acute respiratory infection
Autoři:
Amir Pouremamali 1; Manoochehr Makavndi 1; Alireza Samarbafzadeh 2; Niloofar Neisi 1; Mojtaba Rasti 1; Ahmad Shamsizadeh 1; Ali Teimoori 1; Mehrdad Sadeghi Haj 1; Roohangiz Nashibi 2; Shokrallah Salmanzadeh 2; Roya Nikfar 3; Rahim Soleimani 4; Abdolnabi Shabani 1
Působiště autorů:
Infectious Diseases Department, Medical School, Ahvaz JundiShapur University of Medical Sciences, Ahvaz, IR Iran
1; Abuzar Children’s Hospital, Ahvaz JundiShapur University of Medical Sciences, Ahvaz, Iran
2; Infectious Diseases Department, Children Abozar Hospital, Medical School, Ahvaz JundiShapur University of Medical Sciences, Ahvaz, IR Iran
3; Department of Laboratory Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
4
Vyšlo v časopise:
Epidemiol. Mikrobiol. Imunol. 67, 2018, č. 1, s. 18-23
Kategorie:
Původní práce
Souhrn
Background:
Acute respiratory infection result in high mortality and morbidity worldwide. There are several viral factors that originate respiratory diseases among them Enteroviruses(EVs) and Human Rhinoviruses(HRVs) can be mentioned. HRVs and EVs belong to Picornaviridae family and they have been recently classified under Enteroviruses. The pattern of respiratory infections generating organisms varies according to geographical locations. Therefore, it seems necessary to organize an appropriate plan to manage common viral diseases exclusively about Rhinoviruses and Enteroviruses.
Patient and Methods:
A total of 100 samples were collected from patients with acute respiratory infections (ARIs) who were hospitalized in Ahvaz city hospitals during December 2012 to November 2013 (one year longitude). Semi-Nested PCR was done on samples for detection of HRVs and EVs using region gene of VP4/VP2. Phylogenetic and molecular evolutionary analyses performed with MEGA version 5 software find out the sequence homology among the detected HRV and EV serotype.
Results:
The results of this study revealed that from of 100 cases of ARIs 19 patients (19%) were HRV positive and 3 (3%) patients positive for EVs. Most positive cases of HRVs were observed in the autumn season while 3 positive cases of EVs were equally found in spring, summer and autumn. Phylogenetic analyses showed that the HRV strains were HRV-A9, HRV-A49, HRV-B14 and EV strains were Echo3 and 9.
Conclusion:
The results of this study revealed that high prevalence of 19% HRVs, HRV-A9, HRV-A49, HRV-B14 serotypes and low frequency of 3% Echo Viruses, Echo3 and Echo 9 serotypes have been detected in patients with ARI.
Keywords:
Human rhinoviruses (HRVs) – Enteroviruses (EVs) –
Semi-Nested PCR – acute respiratory infections (ARIs) – Phylogenetic analysis – Khuzestan province
Zdroje
1. Atmar RL, et al. Picornavirus, the most common respiratory virus causing infection among patients of all ages hospitalized with acute respiratory illness. Journal of clinical microbiology 2012;50(2): 506–508.
2. Jin Y, et al. Prevalence and clinical characterization of a newly identified human rhinovirus C species in children with acute respiratory tract infections. Journal of clinical microbiology 2009;47(9):2895–2900.
3. Longtin J, et al. Rhinovirus outbreaks in long-term care facilities, Ontario, Canada. Emerging infectious diseases 2010;16(9):1463.
4. Khadadah M, et al. Respiratory syncytial virus and human rhinoviruses are the major causes of severe lower respiratory tract infections in Kuwait. Journal of medical virology 2010;82(8):1462–1467.
5. Gorjipour H, et al. The seasonal frequency of viruses associated with upper respiratory tract infections in children. Archives of Pediatric Infectious Diseases 2013;1(1):9–13.
6. Tapparel C, et al. New respiratory enterovirus and recombinant rhinoviruses among circulating picornaviruses. Emerg Infect Dis 2009;15(5):719–726.
7. Tan Y, et al. Molecular Evolution and Intraclade Recombination of Enterovirus D68 during the 2014 Outbreak in the United States. Journal of virology 2016;90(4):1997–2007.
8. Tian X, et al. Prevalence of neutralizing antibodies to common respiratory viruses in intravenous immunoglobulin and in healthy donors in southern China. Journal of thoracic disease 2016;8(5):803.
9. Timmermans A, et al. Human Sentinel Surveillance of Influenza and Other Respiratory Viral Pathogens in Border Areas of Western Cambodia. PloS One 2016;11(3):e0152529.
10. Zhu B, et al. Etiology of hand, foot and mouth disease in Guangzhou in 2008. Zhonghua er ke za zhi. Chinese journal of pediatrics 2010;48(2):127–130.
11. Steininger C, Aberle SW, Popow-Kraupp T. Early detection of acute rhinovirus infections by a rapid reverse transcription-PCR assay. Journal of clinical microbiology 2001;39(1):129–133.
12. Onyango CO, et al. Molecular epidemiology of human rhinovirus infections in Kilifi, coastal Kenya. Journal of medical virology 2012;84(5):823–831.
13. Ishiko H, et al. Molecular diagnosis of human enteroviruses by phylogeny-based classification by use of the VP4 sequence. Journal of Infectious Diseases 2002;185(6):744–754.
14. Ishiko H, et al. Human rhinovirus 87 identified as human enterovirus 68 by VP4-based molecular diagnosis. Intervirology 2002;(45):136–141.
15. Tamura K, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 2013;30(12):2725–2729.
16. Mizuta K, et al. Phylogenetic and cluster analysis of human rhinovirus species A (HRV-A) isolated from children with acute respiratory infections in Yamagata, Japan. Virus research 2010;147(2):265–274.
17. Arakawa M, et al. Molecular epidemiological study of human rhinovirus species A, B and C from patients with acute respiratory illnesses in Japan. Journal of medical microbiology 2012;61(3):410–419.
18. Kaida A, et al. Enterovirus 68 in children with acute respiratory tract infections, Osaka, Japan. Emerg Infect Dis 2011;17(8):1494–1497.
19. Mizuta K, et al. Enterovirus isolation from children with acute respiratory infections and presumptive identification by a modified microplate method. International journal of infectious diseases 2003;7(2):138–142.
20. Imamura T, et al. Enterovirus 68 among children with severe acute respiratory infection, the Philippines. Emerg Infect Dis 2011;17(8):1430–1435.
21. Chavoshzadeh Z, et al. Molecular study of respiratory syncytial virus, human rhinovirus and human metapneumovirus, detected in children with acute wheezing. Archives of Pediatric Infectious Diseases 2013;1(1):14–17.
22. Messacar K, et al. Rhino/enteroviruses in hospitalized children: a comparison to influenza viruses. Journal of Clinical Virology 2013;56(1):41–45.
23. Wisdom A, et al. Screening respiratory samples for detection of human rhinoviruses (HRVs) and enteroviruses: comprehensive VP4-VP2 typing reveals high incidence and genetic diversity of HRV species C. Journal of clinical microbiology 2009;47(12):3958–3967.
24. Khetsuriani N, et al. Novel human rhinoviruses and exacerbation of asthma in children. Emerging infectious diseases 2008;14(11):1793.
Štítky
Alergologie a imunologie Dermatologie Dětská dermatologie Hygiena a epidemiologie Infekční lékařství Mikrobiologie LaboratořČlánek vyšel v časopise
Epidemiologie, mikrobiologie, imunologie
2018 Číslo 1
- Horní limit denní dávky vitaminu D: Jaké množství je ještě bezpečné?
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Isoprinosin je bezpečný a účinný v léčbě pacientů s akutní respirační virovou infekcí
Nejčtenější v tomto čísle
- Nová definice sepse (Sepsis-3): cíle, přednosti a kontroverze
- Nozokomiální kandidémie v České republice v letech 2012–2015: výsledky mikrobiologické multicentrické studie
- West Nile virus (linie 2) v komárech na jižní Moravě – očekávání prvních autochtonních lidských případů
- Virová hepatitida A – séroprevalence a proočkovanost v Jihomoravském kraji