The Accessory Genome as a Cradle for Adaptive Evolution in Pathogens
article has not abstract
Published in the journal:
. PLoS Pathog 8(4): e32767. doi:10.1371/journal.ppat.1002608
Category:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1002608
Summary
article has not abstract
Pathogens offer many of the most fascinating and well-studied examples of evolution because their speed of adaptation allows observation of evolutionary change within human lifetimes. The rapid evolution observed in pathogenic viruses, bacteria, and fungi affect human, animal, and plant health globally. For example, influenza viruses regularly recombine genes affecting host range, infection pathways, and virulence prior to the emergence of deadly outbreaks [1]. The emergence of antibiotic resistance in bacteria, including highly resistant Staphylococcus aureus strains and the re-emergence of resistant tuberculosis, is well documented [2], [3]. The recent outbreak in Africa of wheat stem rust caused by the Ug99 pathotype of the fungus Puccinia graminis tritici surprised many plant pathologists, who thought this ancient pathogen was defeated during the green revolution [4]. It is clear that pathogens engage host species in a constant race to evolve new defense mechanisms. By extension, we are constantly challenged to find new treatments and better containment measures to protect human health and essential crops.
Is There a Genetic Mechanism Enabling More Rapid Evolution in Pathogens?
Extensive work on the molecular basis of pathogen adaptation reveals several common themes. Pathogens usually have higher rates of reproduction and shorter generation times than their hosts. Large effective population sizes maintain genetic diversity while recombination or reassortment puts together favorable combinations of mutations. Switches in reproductive modes are frequent, as epidemics are often caused by an emerging clone that has fixed a favorable combination of alleles and gained the potential for rapid dissemination. However, the astonishing capacity of pathogens to evolve rapidly is not based solely on these life-history traits.
It appears that rapid adaptation to hosts and new environments is favored when pathogens carry a highly variable, rapidly mutating genomic compartment. For example, viruses can carry satellite RNAs [5] while toxins and antibiotic resistance factors are often encoded on plasmids in bacteria [6]. Pathogenic fungi often possess highly variable regions that may be “lineage-specific” (i.e., restricted to a set of isolates) and cover entire chromosomes. Such chromosomes have been called accessory, supernumerary, B, or dispensable chromosomes. Their discovery dates back to 1907, with the very first observation of unusual chromosomes (in hemipteran insects) [7]. We think that the term “accessory” provides the most neutral description of these chromosomes and the term is well aligned with the literature on bacterial pathogens. The rapidly evolving compartments of pathogen genomes have been associated with high mutation rates, the acquisition of foreign genes, copy number polymorphisms, and frequent ectopic recombination [8]–[11]. By comparison, the core genome carries essential genes that encode basal functions such as cellular metabolism and reproduction. Because of its essential functions, the core genome is thought to be shielded from high recombination and mutation rates and insertion of novel genes. Recent genomic comparisons have revealed that many pathogens share a strikingly compartmentalized genome, which we will refer to as the “2-speed genome” following Raffaele et al. [10].
Fungal Pathogens Carry an Extensive Set of Accessory Genomic Elements
Fungi possess sophisticated accessory genomic elements linked to pathogenicity that can span entire chromosomes. We will focus this review on these accessory chromosomes.
Nectria haematococca was the first discovered and probably best-studied fungus carrying accessory chromosomes. Accessory chromosome 14 carries a cluster of genes encoding detoxification of a phytoalexin produced by pea plants, enabling isolates carrying this chromosome to be virulent on peas [11], [12]. Chromosome 14, as well as two other accessory chromosomes (15 and 17), show striking differences to the core chromosomes. A substantial fraction of the genes located on these chromosomes are more similar to the distantly related Aspergillus clade than to the more closely related Fusarium species [11]. These accessory chromosomes are also enriched in transposable elements and gene duplications. The origin of N. haematococca accessory chromosomes remains unresolved, as it is unknown whether the chromosomes originated from ancient core chromosomes or whether interspecific transfers might have been involved [11].
A similar picture has emerged of the accessory chromosomes of the tomato pathogen Fusarium oxysporum (f. sp. lycopersici). Nearly 40% of the F. oxysporum genome was specific to the tomato-infecting lineage and lacked synteny with closely related species [13]. In this study, accessory chromosomes contained the majority of transposable elements and genes were enriched in secreted proteins and virulence factors. Similar to what was found for N. haematococca, phylogenetic analyses of the genes on F. oxysporum accessory chromosomes point to horizontal transfer as the most likely origin. The consensus for a broad set of genes located on the accessory chromosomes points to an emergence coinciding with the root of the F. oxysporum, F. verticillioides, and F. graminearum clade but prior to the split with N. haematococca. Interestingly, F. oxysporum chromosome 14 can be exchanged among different strains despite the lack of sexual recombination [13].
Mycosphaerella graminicola, a major wheat pathogen that originated in the Fertile Crescent during the domestication of wheat, carries an especially rich set of accessory chromosomes [14], [15] (Figure 1). M. graminicola maintains extensive chromosomal length polymorphism within populations, likely through the high degree of chromosomal rearrangements occurring during meiosis [8], [16]. Similar to other fungi, the genes located on accessory chromosomes show only weak homology to genes found on core chromosomes or closely related species. The Mycosphaerella clade may provide an interesting model for the evolution of accessory chromosomes as closely related sister species carry sets of chromosomes of similar length. However, it is currently unknown whether these chromosomes are accessory or part of the core chromosome set. Interestingly, genes on accessory chromosomes with homologs in sister species showed an accelerated rate of evolution compared to the core genome [17].
The Two-Speed Genome as a Fundamental Characteristic of Rapidly Evolving Pathogens
This brief survey of fungal pathogens suggests that at least some portions of the accessory chromosomes constitute the rapidly evolving segment of a genome that evolves at different speeds. Compartmentalization of the genome may provide several evolutionary advantages to the pathogen. Among the benefits of an accessory genome are the potential to acquire novel virulence factors that can expand host range. A novel gene function may evolve through gene or segmental duplication within the genome or through horizontal transfer. Depending on the mechanism of gene insertion or duplication, the novel gene may disrupt an existing, functional gene, influence gene transcription, and/or favor non-homologous recombination. The higher rate of substitutions and non-homologous recombination may be permissive only for chromosomes largely devoid of essential genes. Accessory chromosomes, therefore, provide an ideal “testing ground” for the evolution of new genes. A pathogen faced by a high heterogeneity among potential hosts may benefit from having virulence genes located on accessory chromosomes. A gene that is beneficial to the pathogen only on a particular host genotype but detrimental on other hosts may more rapidly increase or decrease in frequency in a population if it is located on an accessory chromosome.
A high mutation rate coupled with the expected lack of homologous pairings during meiosis for an accessory chromosome may lead to gradual decay of its chromosomal structure. Similar to the processes observed for the mating type loci in Cryptococcus neoformans and Neurospora tetrasperma [18], [19], as well as heteromorphic animal sex chromosomes [20], an accessory chromosome is expected to gradually decay in a population unless homologous pairings help purge deleterious mutations. This process, termed Muller's ratchet, was proposed to operate on animal accessory chromosomes [21]. In fungal pathogens, large population sizes are expected to slow a ratchet process of degeneration. However, as many genes on accessory chromosomes are not likely to be under strong selection pressure, segmental deletions could be fixed either through founder events or selective sweeps affecting the pathogen populations. Hints of the decay of accessory chromosomes in fungi are found in M. graminicola, where several accessory chromosomes show large length variation segregating within populations [16]. A largely unexplored aspect of accessory chromosomes is their capacity for meiotic drive (i.e., a transmission rate higher than expected under Mendelian segregation). The extensive literature on animal accessory chromosomes shows that meiotic drive is ubiquitous [22]. The propensity of accessory chromosomes to be horizontally transferred under lab conditions in F. oxysporum and Alternaria alternata [13], [23] may provide an analogous scenario to “selfish” drive transmission. Understanding the evolutionary dynamics of accessory chromosomes in fungi will require consideration of both the beneficial effects of virulence genes located on these chromosomes and their transmission characteristics through both meiosis and horizontal chromosome transfer.
Toward a More Comprehensive Understanding of Accessory Genomes in Pathogens
Recognizing common themes in the vast diversity of organisms carrying accessory genome elements enables us to refine our understanding of the genetic basis of rapid evolution in pathogens. But a central question remains largely unanswered: How are accessory genomic elements generated and how are they maintained through evolution?
In bacteria, important virulence traits and antibiotic resistance are often encoded on accessory genome elements such as plasmids. The potential for the evolution of antibiotic resistance and increased virulence is often directly related to the mobility of the genes encoding these traits among strains. Will similar trends emerge for the fungal accessory genomes? Do fungal clades with a propensity to carry accessory chromosomes (such as Fusarium or Mycosphaerella) pose a more significant threat for rapid evolution of virulence or drug resistance?
Zdroje
1. NelsonMIHolmesEC 2007 The evolution of epidemic influenza. Nat Rev Genet 8 196 205 doi:10.1038/nrg2053
2. ShahNSWrightABaiG-HBarreraLBoulahbalF 2007 Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 13 380 387
3. HarrisSRFeilEJHoldenMTGQuailMANickersonEK 2010 Evolution of MRSA during hospital transmission and intercontinental spread. Science 327 469 474 doi:10.1126/science.1182395
4. SinghRPHodsonDPHuerta-EspinoJJinYBhavaniS 2011 The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49 465 481 doi:10.1146/annurev-phyto-072910-095423
5. HuC-CHsuY-HLinN-S 2009 Satellite RNAs and Satellite Viruses of Plants. Viruses 1 1325 1350 doi:10.3390/v1031325
6. RobicsekAJacobyGAHooperDC 2006 The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6 629 640
7. WilsonEB 1907 The supernumerary chromosomes of Hemiptera. Science 26 870 871
8. WittenbergAHJvan der LeeTAJBen M'barekSWareSBGoodwinSB 2009 Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. PLoS ONE 4 e5863 doi:10.1371/journal.pone.0005863
9. van de WouwAPCozijnsenAJHaneJKBrunnerPCMcDonaldBA 2010 Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog 6 e1001180 doi:10.1371/journal.ppat.1001180
10. RaffaeleSFarrerRACanoLMStudholmeDJMacLeanD 2010 Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330 1540 1543 doi:10.1126/science.1193070
11. ColemanJJRounsleySDRodriguez-CarresMKuoAWasmannCC 2009 The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5 e1000618 doi:10.1371/journal.pgen.1000618
12. MiaoVPWCovertSFVanEttenHD 1991 A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 254 1773 1776
13. MaL-Jvan der DoesHCBorkovichKAColemanJJDaboussiM-J 2010 Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464 367 373 doi:10.1038/nature08850
14. StukenbrockEHBankeSJavan-NikkhahMMcDonaldBA 2007 Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. Mol Biol Evol 24 398 411
15. GoodwinSBM'barekSBDhillonBWittenbergAHJCraneCF 2011 Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7 e1002070 doi:10.1371/journal.pgen.1002070
16. McDonaldBAMartinezJ 1991 Chromosome Length Polymorphisms in a Septoria tritici Population. Curr Genet 19 265 271
17. StukenbrockEHJørgensenFGZalaMHansenTTMcDonaldBA 2010 Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet 6 e1001189 doi:10.1371/journal.pgen.1001189
18. LengelerKBFoxDSFraserJAAllenAForresterK 2002 Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot Cell 1 704 718
19. EllisonCEStajichJEJacobsonDJNatvigDOLapidusA 2011 Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma. Genetics 189 55 69 doi:10.1534/genetics.111.130690
20. CharlesworthDCharlesworthBMaraisG 2005 Steps in the evolution of heteromorphic sex chromosomes. Heredity 95 118 128 doi:10.1038/sj.hdy.6800697
21. GreenDM 1990 Muller's Ratchet and the evolution of supernumerary chromosomes. Genome 33 818 824
22. JonesR 1991 B-Chromosome Drive. Am Nat 137 430 442
23. AkagiYAkamatsuHOtaniHKodamaM 2009 Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot Cell 8 1732 1738 doi:10.1128/EC.00135-09
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2012 Číslo 4
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- The Accessory Genome as a Cradle for Adaptive Evolution in Pathogens
- Systematic Review of Mucosal Immunity Induced by Oral and Inactivated Poliovirus Vaccines against Virus Shedding following Oral Poliovirus Challenge
- The Arbuscular Mycorrhizal Symbiosis: Origin and Evolution of a Beneficial Plant Infection
- Modelling the Evolutionary Dynamics of Viruses within Their Hosts: A Case Study Using High-Throughput Sequencing