Gestational age and the risk of autism spectrum disorder in Sweden, Finland, and Norway: A cohort study
Autoři:
Martina Persson aff001; Signe Opdahl aff005; Kari Risnes aff006; Raz Gross aff008; Eero Kajantie aff006; Abraham Reichenberg aff003; Mika Gissler aff013; Sven Sandin aff001
Působiště autorů:
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
aff001; Department of Clinical Science and Education, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
aff002; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States of America
aff003; Seaver Autism Center for Research and Treatment at Mount Sinai, New York, United States of America
aff004; Department of Public Health and Nursing, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
aff005; Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
aff006; Department of Research and Development, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
aff007; Division of Psychiatry, The Chaim Sheba Medical Center, Tel Hashomer, Israel
aff008; Department of Epidemiology and Preventive Medicine, Department of Psychiatry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
aff009; Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland
aff010; PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
aff011; Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
aff012; THL Finnish Institute for Health and Welfare, Information Services Department, Helsinki, Finland
aff013; University of Turku, Research Centre for Child Psychiatry, Turku, Finland
aff014; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
aff015; Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
aff016
Vyšlo v časopise:
Gestational age and the risk of autism spectrum disorder in Sweden, Finland, and Norway: A cohort study. PLoS Med 17(9): e32767. doi:10.1371/journal.pmed.1003207
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003207
Souhrn
Introduction
The complex etiology of autism spectrum disorder (ASD) is still unresolved. Preterm birth (<37 weeks of gestation) and its complications are the leading cause of death of babies in the world, and those who survive often have long-term health problems. Length of gestation, including preterm birth, has been linked to ASD risk, but robust estimates for the whole range of gestational ages (GAs) are lacking. The primary objective of this study was to provide a detailed and robust description of ASD risk across the entire range of GAs while adjusting for sex and size for GA.
Methods and findings
Our study had a multinational cohort design, using population-based data from medical registries in three Nordic countries: Sweden, Finland, and Norway. GA was estimated in whole weeks based on ultrasound. Children were prospectively followed from birth for clinical diagnosis of ASD. Relative risk (RR) of ASD was estimated using log-binomial regression. Analyses were also stratified by sex and by size for GA. The study included 3,526,174 singletons born 1995 to 2015, including 50,816 (1.44%) individuals with ASD. In the whole cohort, 165,845 (4.7%) were born preterm. RR of ASD increased by GA, from 40 to 24 weeks and from 40 to 44 weeks of gestation. The RR of ASD in children born in weeks 22–31, 32–36, and 43–44 compared to weeks 37–42 were estimated at 2.31 (95% confidence interval [CI] 2.15–2.48; 1.67% vs 0.83%; p-value < 0.001), 1.35 (95% CI 1.30–1.40; 1.08% vs 0.83%; p-value < 0.001), and 1.37 (95% CI 1.21–1.54; 1.74% vs 0.83%; p-value < 0.001), respectively. The main limitation of this study is the lack of data on potential causes of pre- or postterm birth. Also, the possibility of residual confounding should be considered.
Conclusion
In the current study, we observed that the RR of ASD increased weekly as the date of delivery diverged from 40 weeks, both pre- and postterm, independently of sex and size for GA. Given the unknown etiology of ASD and the lifelong consequences of the disorder, identifying groups of increased risk associated with a potentially modifiable risk factor is important.
Author summary
Klíčová slova:
Autism spectrum disorder – Birth – Finland – Labor and delivery – Medical risk factors – Norway – Preterm birth – Sweden
Zdroje
1. Masi A, DeMayo MM, Glozier N, Guastella A.J. Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neurosci Bull. 2017;33(2):183–193. doi: 10.1007/s12264-017-0100-y 28213805
2. Arora NK, Nair MKC, Gulati S, Deshmukh V, Mohapatra A, Mishra D et al. Neurodevelopmental disorders in children aged 2–9 years: Population-based burden estimates across five regions in India. PLoS Med. 2018;15(7):e1002615. doi: 10.1371/journal.pmed.1002615 30040859
3. Weintraub K. The prevalence puzzle: Autism counts. Nature. 2011;479(7371): 22–24. doi: 10.1038/479022a 22051656
4. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018;392(10146):508–520. doi: 10.1016/S0140-6736(18)31129-2 30078460
5. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910. doi: 10.1016/S0140-6736(13)61539-1
6. Loomes R, Hull L, Mandy WPL. What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. J Am Acad Child Adolesc Psychiatry. 2017;56(6):466–474. doi: 10.1016/j.jaac.2017.03.013 28545751
7. Hegarty JP 2nd, Pegoraro LFL, Lazzeroni LC, Raman M.M, Hallmayer J.F, Monterrey J.C, et al. Genetic and environmental influences on structural brain measures in twins with autism spectrum disorder. Mol Psychiatry. 2019;18. doi: 10.1038/s41380-018-0330-z 30659287
8. Bai D, Yip BHK, Windham GC, Sourander A, Francis R, Yoffe, et al. Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort. JAMA Psychiatry. 2019;76(10):1035–43. doi: 10.1001/jamapsychiatry.2019.1411
9. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68(11):1095–102. doi: 10.1001/archgenpsychiatry.2011.76 21727249
10. WHO. Preterm birth fact sheet. 2019.
11. Harrison MS, Goldenberg RL. Global burden of prematurity. Semin Fetal Neonatal Med. 2016;21(2):74–79. doi: 10.1016/j.siny.2015.12.007 26740166
12. Kuzniewicz MW, Wi S, Qian Y, Walsh E.M, Armstrong M.A, Croen L.A. Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. J Pediatr. 2014;164(1):20–25. doi: 10.1016/j.jpeds.2013.09.021 24161222
13. Lampi KM, Lehtonen L, Tran PL, Suominen A, Lehti V, Banjerjee P.N, et al. Risk of autism spectrum disorders in low birth weight and small for gestational age infants. J Pediatr. 2012;161(5):830–836. doi: 10.1016/j.jpeds.2012.04.058 22677565
14. Kuban KC, Joseph RM, O’Shea TM, Allred E.N, Heeren T, Douglass L, et al., Girls and Boys Born before 28 Weeks Gestation: Risks of Cognitive, Behavioral, and Neurologic Outcomes at Age 10 Years. J Pediatr. 2016;173:69–75. e1. doi: 10.1016/j.jpeds.2016.02.048 27004675
15. Schieve L.A., et al., Population impact of preterm birth and low birth weight on developmental disabilities in US children. Ann Epidemiol. 2016;26(4):267–274. doi: 10.1016/j.annepidem.2016.02.012 27085382
16. Larsson HJ, Eaton WW, Madsen KM, Vestergaard M, Olesen A.V, Agerbo E, et al. Risk factors for autism: perinatal factors, parental psychiatric history, and socioeconomic status. American journal of epidemiology 2005;161(10):916–25; discussion 26–8. doi: 10.1093/aje/kwi123 15870155
17. Pyhala R, Hovi P, Lahti M, Sammallahti S, lahti J, Heionen K, et al. Very low birth weight, infant growth, and autism-spectrum traits in adulthood. Pediatrics. 2014;134(6):1075–1083. doi: 10.1542/peds.2014-1097 25367538
18. Movsas T.Z. and Paneth N. The effect of gestational age on symptom severity in children with autism spectrum disorder. J Autism Dev Disord. 2012;42(11):2431–2439. doi: 10.1007/s10803-012-1501-4 22422339
19. Atladottir HO, Schendel DE, Henriksen TB, Hjort L, Parner E.T. Gestational Age and Autism Spectrum Disorder: Trends in Risk Over Time. Autism Res. 2016;9(2):224–231. doi: 10.1002/aur.1525 26363410
20. Xie S, Heuvelman H, Magnusson C, Rai D, Lyall K, Newschaffer C.J, et al. Prevalence of Autism Spectrum Disorders with and without Intellectual Disability by Gestational Age at Birth in the Stockholm Youth Cohort: a Register Linkage Study. Paediatr Perinat Epidemiol. 2017;31(6):586–594. doi: 10.1111/ppe.12413 28898924
21. Agrawal S, Rao SC, Bulsara MK, Patola S.K. Prevalence of Autism Spectrum Disorder in Preterm Infants: A Meta-analysis. Pediatrics. 2018;142(3):e20180134. doi: 10.1542/peds.2018-0134 30076190
22. Henderson JJ, McWilliam OA, Newnham JP, Pennell C.E. Preterm birth aetiology 2004–2008. Maternal factors associated with three phenotypes: spontaneous preterm labour, preterm pre-labour rupture of membranes and medically indicated preterm birth. J Matern Fetal Neonatal Med. 2012;25(6):642–647. doi: 10.3109/14767058.2011.597899 21827362
23. Schaaf JM, Ravelli AC, Mol BW, Abu-Hanna A. Development of a prognostic model for predicting spontaneous singleton preterm birth. Eur J Obstet Gynecol Reprod Biol. 2012;164(2):150–155. doi: 10.1016/j.ejogrb.2012.07.007 22824569
24. Oberg AS, Frisell T, Svensson AC, Iliadou A.N. Maternal and fetal genetic contributions to postterm birth: familial clustering in a population-based sample of 475,429 Swedish births. Am J Epidemiol. 2013;177(6):531–537. doi: 10.1093/aje/kws244 23425630
25. Roos N, Sahlin L, Ekman-Ordeberg G, Kieler H, Stephansson O. Maternal risk factors for postterm pregnancy and cesarean delivery following labor induction. Acta Obstet Gynecol Scand. 2010;89(8):1003–1010. doi: 10.3109/00016349.2010.500009 20636240
26. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. doi: 10.1016/S0140-6736(08)60074-4 18177778
27. Moore GS, Kneitel AW, Walker CK, Gilbert W.M, Xing G. Autism risk in small- and large-for-gestational-age infants. Am J Obstet Gynecol. 2012;206(4):314.e1–9. doi: 10.1016/j.ajog.2012.01.044 22464070
28. Abel KM, Dalman C, Svensson AC, Susser E, Dal H, Idring S, et al. Deviance in fetal growth and risk of autism spectrum disorder. Am J Psychiatry. 2013;170(4):391–398. doi: 10.1176/appi.ajp.2012.12040543 23545793
29. Leonard H, Nassar N, Bourke J, Blair E, Mulroy S, de Klerk N, et al. Relation between intrauterine growth and subsequent intellectual disability in a ten-year population cohort of children in Western Australia. Am J Epidemiol. 2008;167(1):103–111. doi: 10.1093/aje/kwm245 17898000
30. RECAP. RECAP preterm—Research on European children and adults born preterm. 2019 [cited 2019 Aug 2]. https:\\recap-preterm.eu.
31. Lampi KM, Sourander A, Gissler M, Niemela S, Rhenstrom K, Pulkkinen E, et al. Brief report: validity of Finnish registry-based diagnoses of autism with the ADI-R. Acta Paediatr. 2010;99(9):1425–1428. doi: 10.1111/j.1651-2227.2010.01835.x 20412100
32. Suren P, Saasen-Havdahl A, Bresnahan M, Hirtz D, Hornig M, Lord C, et al. Sensitivity and specificity of early screening for autism. BJPsych Open. 2019;5(3):e41. doi: 10.1192/bjo.2019.34 31530312
33. Sandin S, Schendel D, Magnusson P, Hultman C, Suren P, Susser E, et al. Autism risk associated with parental age and with increasing difference in age between the parents. Mol Psychiatry. 2016;21(5):693–700. doi: 10.1038/mp.2015.70 26055426
34. Idring S, Rai D, Dal H, Dalman C, Sturm H, Zander E, et al. Autism spectrum disorders in the Stockholm Youth Cohort: design, prevalence and validity. PLoS ONE. 2012;7(7):e41280. doi: 10.1371/journal.pone.0041280 22911770
35. Sandin S, Hultman CM, Kolevzon A, Gross R, MacCabe J.H, Reichenberg A. Advancing maternal age is associated with increasing risk for autism: a review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2012;51(5):477–486.e1. doi: 10.1016/j.jaac.2012.02.018 22525954
36. Vieira MC, Relph S, Persson M, Seed P.T, Pasupathy D. Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study. PLoS Med. 2019;16(9):e1002902. doi: 10.1371/journal.pmed.1002902 31539391
37. Moster D, Wilcox AJ, Vollset SE, Markestad T, Lie R. Cerebral palsy among term and postterm births. JAMA. 2010;304(9):976–982. doi: 10.1001/jama.2010.1271 20810375
38. Yang S., Platt R.W., and Kramer M.S. Variation in child cognitive ability by week of gestation among healthy term births. Am J Epidemiol. 2010;171(4):399–406. doi: 10.1093/aje/kwp413 20080810
39. Riley S.C., Walton J.C, Herlick J.M, Challis J.R. The localization and distribution of corticotropin-releasing hormone in the human placenta and fetal membranes throughout gestation. J Clin Endocrinol Metab. 1991;72(5):1001–1007. doi: 10.1210/jcem-72-5-1001 2022703
40. Novy M.J. and Liggins G.C. Role of prostaglandins, prostacyclin, and thromboxanes in the physiologic control of the uterus and in parturition. Semin Perinatol. 1980;4(1):45–66. 6770468
41. Kelly R.W. Pregnancy maintenance and parturition: the role of prostaglandin in manipulating the immune and inflammatory response. Endocr Rev. 1994;15(5):684–706. doi: 10.1210/edrv-15-5-684 7843072
42. Challis J.R.G., Matthews S.G, Gibb W, Lye S.J. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21(5):514–550. doi: 10.1210/edrv.21.5.0407 11041447
43. Weinberg C.R. and Shi M. The genetics of preterm birth: using what we know to design better association studies. Am J Epidemiol. 2009;170(11):1373–1381. doi: 10.1093/aje/kwp325 19854804
44. Zhang G, Feenstra B, Bacelis J, Liu X, Muglia L.M, Juodakis J, et al. Genetic Associations with Gestational Duration and Spontaneous Preterm Birth. N Engl J Med. 2017;377(12):1156–1167. doi: 10.1056/NEJMoa1612665 28877031
45. Morken N.H., Melve K.K., and Skjaerven R. Recurrence of prolonged and post-term gestational age across generations: maternal and paternal contribution. Bjog. 2011;118(13):1630–1635. doi: 10.1111/j.1471-0528.2011.03154.x 21985579
46. Modabbernia A, Sandin S, Gross R, Leonard H, Gissler M, Parner E.T, et al. Apgar score and risk of autism. Eur J Epidemiol. 2019;34(2):105–114. doi: 10.1007/s10654-018-0445-1 30291529
47. Modabbernia A., Velthorst E., and Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017;8:13. doi: 10.1186/s13229-017-0121-4 28331572
48. Cnattingius S, Villamor E, Johansson S, Edstedt-Bonamy A.K, Persson M, Wikstrom A.K, et al. Maternal Maternal obesity and risk of preterm delivery. JAMA. 2013;309(22):2362–2370. doi: 10.1001/jama.2013.6295 23757084
49. Persson M., Norman M., and Hanson U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: A large, population-based study. Diabetes Care. 2009;32(11):2005–2009. doi: 10.2337/dc09-0656 19675195
50. Goines P.E., Croen L.A, Braunschweig D, et al., Increased midgestational IFN-gamma, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol Autism. 2011;2:13. doi: 10.1186/2040-2392-2-13 21810230
51. Zheng Z, Zhang L, Li S, Zhao F, Wang Y, Huang L, et al. Association among obesity, overweight and autism spectrum disorder: a systematic review and meta-analysis. Sci Rep. 2017;7(1):11697. doi: 10.1038/s41598-017-12003-4 28916794
52. Xu G, Jing J, Bowers K, Liu B, Bao W. Maternal diabetes and the risk of autism spectrum disorders in the offspring: a systematic review and meta-analysis. J Autism Dev Disord. 2014;44(4):766–775. doi: 10.1007/s10803-013-1928-2 24057131
53. Dachew BA, Mamun A, Maravilla JC, Alati R. Pre-eclampsia and the risk of autism-spectrum disorder in offspring: meta-analysis. Br J Psychiatry. 2018;212(3):142–147. doi: 10.1192/bjp.2017.27 29436313
54. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. 2017;38:81–102. doi: 10.1146/annurev-publhealth-031816-044318 28068486
55. The Finnish Institute for Health and Welfare. Statistical Report 5. 2018. p. Table 11.
56. The Finnish Institute for Health and Welfare. Statistical report. Perinatal statistics in the Nordic countries. 2020.
57. Hintz SR, Kendrick DE, Vohr BR, Kenneth Poole W, Higgnis RD. Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr. 2006;95(10):1239–1248. doi: 10.1080/08035250600599727 16982497
58. McCoy BM, Rickert ME, Class QA, Larsson H, Lichtenstein P, D´Onofrio BM. Mediators of the association between parental severe mental illness and offspring neurodevelopmental problems. Ann Epidemiol. 2014;24(9):629–634, 634.e1. doi: 10.1016/j.annepidem.2014.05.010 25037304
59. Rosen BN, Lee BK, Lee NL, Yang Y, Burstyn L. Maternal Smoking and Autism Spectrum Disorder: A Meta-analysis. J Autism Dev Disord. 2015;45(6):1689–1698. doi: 10.1007/s10803-014-2327-z 28659613
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- „Jednohubky“ z klinického výzkumu – 2024/44
- Je libo čepici místo mozkového implantátu?
Nejčtenější v tomto čísle
- Interventions for treatment of COVID-19: A living systematic review with meta-analyses and trial sequential analyses (The LIVING Project)
- COVID-19 prevention and treatment: A critical analysis of chloroquine and hydroxychloroquine clinical pharmacology
- Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis
- Long-term survival of children born with congenital anomalies: A systematic review and meta-analysis of population-based studies