Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
Autoři:
Liying Guan aff001; Zhigao Zhan aff001; Yongzhi Yang aff001; Yue Miao aff001; Xun Huang aff001; Mei Ding aff001
Působiště autorů:
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
aff001; University of Chinese Academy of Sciences, Beijing, China
aff002
Vyšlo v časopise:
Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons. PLoS Genet 16(9): e1008704. doi:10.1371/journal.pgen.1008704
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008704
Souhrn
ER stress occurs in many physiological and pathological conditions. However, how chronic ER stress is alleviated in specific cells in an intact organism is an outstanding question. Here, overexpressing the gap junction protein UNC-9 (Uncoordinated) in C. elegans neurons triggers the Ire1-Xbp1-mediated stress response in an age-dependent and cell-autonomous manner. The p38 MAPK PMK-3 regulates the chronic stress through IRE-1 phosphorylation. Overexpressing gap junction protein also activates autophagy. The insulin pathway functions through autophagy, but not the transcription of genes encoding ER chaperones, to counteract the p38-Ire1-Xbp1-mediated stress response. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in a subset of cells in multicellular organism.
Klíčová slova:
Autophagic cell death – Caenorhabditis elegans – Cellular stress responses – Endoplasmic reticulum – Endoplasmic reticulum stress response – Neurons – Phosphorylation – Stress signaling cascade
Zdroje
1. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334: 1081–1086. doi: 10.1126/science.1209038 22116877
2. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13: 184–190. doi: 10.1038/ncb0311-184 21364565
3. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, et al. (2011) Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117: 1311–1314. doi: 10.1182/blood-2010-08-303099 21081713
4. Carrasco DR, Sukhdeo K, Protopopova M, Sinha R, Enos M, Carrasco DE, et al. (2007) The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11: 349–360. doi: 10.1016/j.ccr.2007.02.015 17418411
5. Mori K (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146: 743–750. doi: 10.1093/jb/mvp166 19861400
6. Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87: 391–404. doi: 10.1016/s0092-8674(00)81360-4 8898193
7. Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1: 803–817. doi: 10.1046/j.1365-2443.1996.d01-274.x 9077435
8. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881–891. doi: 10.1016/s0092-8674(01)00611-0 11779464
9. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92–96. doi: 10.1038/415092a 11780124
10. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529. doi: 10.1038/nrm2199 17565364
11. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12: 105–118. doi: 10.1016/S1474-4422(12)70238-7 23237905
12. Gow A, Sharma R (2003) The unfolded protein response in protein aggregating diseases. Neuromolecular Med 4: 73–94. doi: 10.1385/NMM:4:1-2:73 14528054
13. Safra M, Henis-Korenblit S (2014) A new tool in C. elegans reveals changes in secretory protein metabolism in ire-1-deficient animals. Worm 3: e27733. doi: 10.4161/worm.27733 25191629
14. Mizushima N (2007) Autophagy: process and function. Genes Dev 21: 2861–2873. doi: 10.1101/gad.1599207 18006683
15. Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581: 2156–2161. doi: 10.1016/j.febslet.2007.01.096 17382324
16. Chan SN, Tang BL (2013) Location and membrane sources for autophagosome formation—from ER-mitochondria contact sites to Golgi-endosome-derived carriers. Mol Membr Biol 30: 394–402. doi: 10.3109/09687688.2013.850178 24175710
17. Hamasaki M, Shibutani ST, Yoshimori T (2013) Up-to-date membrane biogenesis in the autophagosome formation. Curr Opin Cell Biol 25: 455–460. doi: 10.1016/j.ceb.2013.03.004 23578367
18. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4: e423. doi: 10.1371/journal.pbio.0040423 17132049
19. Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281: 30299–30304. doi: 10.1074/jbc.M607007200 16901900
20. Laird DW (2010) The gap junction proteome and its relationship to disease. Trends Cell Biol 20: 92–101. doi: 10.1016/j.tcb.2009.11.001 19944606
21. Xia K, Ma H, Xiong H, Pan Q, Huang L, Wang D, et al. (2010) Trafficking abnormality and ER stress underlie functional deficiency of hearing impairment-associated connexin-31 mutants. Protein Cell 1: 935–943. doi: 10.1007/s13238-010-0118-7 21204020
22. Berthoud VM, Minogue PJ, Lambert PA, Snabb JI, Beyer EC (2016) The Cataract-linked Mutant Connexin50D47A Causes Endoplasmic Reticulum Stress in Mouse Lenses. J Biol Chem 291: 17569–17578. doi: 10.1074/jbc.M115.707950 27317663
23. Tattersall D, Scott CA, Gray C, Zicha D, Kelsell DP (2009) EKV mutant connexin 31 associated cell death is mediated by ER stress. Hum Mol Genet 18: 4734–4745. doi: 10.1093/hmg/ddp436 19755382
24. Alapure BV, Stull JK, Firtina Z, Duncan MK (2012) The unfolded protein response is activated in connexin 50 mutant mouse lenses. Exp Eye Res 102: 28–37. doi: 10.1016/j.exer.2012.06.004 22713599
25. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314: 1–340. doi: 10.1098/rstb.1986.0056 22462104
26. Jin Y, Jorgensen E, Hartwieg E, Horvitz HR (1999) The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 19: 539–548. doi: 10.1523/JNEUROSCI.19-02-00539.1999 9880574
27. Chen B, Liu Q, Ge Q, Xie J, Wang ZW (2007) UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr Biol 17: 1334–1339. doi: 10.1016/j.cub.2007.06.060 17658257
28. Miller DM, Stockdale FE, Karn J (1986) Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans. Proc Natl Acad Sci U S A 83: 2305–2309. doi: 10.1073/pnas.83.8.2305 2422655
29. Waterston RH (1989) The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. EMBO J 8: 3429–3436. 2583106
30. Liu Q, Chen B, Gaier E, Joshi J, Wang ZW (2006) Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabditis elegans. J Biol Chem 281: 7881–7889. doi: 10.1074/jbc.M512382200 16434400
31. White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275: 327–348. doi: 10.1098/rstb.1976.0086 8806
32. Stringham E, Pujol N, Vandekerckhove J, Bogaert T (2002) unc-53 controls longitudinal migration in C. elegans. Development 129: 3367–3379. 12091307
33. Shim J, Umemura T, Nothstein E, Rongo C (2004) The unfolded protein response regulates glutamate receptor export from the endoplasmic reticulum. Mol Biol Cell 15: 4818–4828. doi: 10.1091/mbc.e04-02-0108 15317844
34. Prischi F, Nowak PR, Carrara M, Ali MM (2014) Phosphoregulation of Ire1 RNase splicing activity. Nat Commun 5: 3554. doi: 10.1038/ncomms4554 24704861
35. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386: 296–299. doi: 10.1038/386296a0 9069290
36. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4: e24. doi: 10.1371/journal.pgen.0040024 18282106
37. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301: 1387–1391. doi: 10.1126/science.1087782 12958363
38. Zhou Y, Wang X, Song M, He Z, Cui G, Peng G, et al. (2019) A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing. Nat Commun 10: 4827. doi: 10.1038/s41467-019-12821-2 31645592
39. Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, et al. (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107: 893–903. doi: 10.1016/s0092-8674(01)00612-2 11779465
40. Urano F, Calfon M, Yoneda T, Yun C, Kiraly M, Clark SG, et al. (2002) A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol 158: 639–646. doi: 10.1083/jcb.200203086 12186849
41. Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153: 1435–1447. doi: 10.1016/j.cell.2013.05.042 23791175
42. Safra M, Ben-Hamo S, Kenyon C, Henis-Korenblit S (2013) The ire-1 ER stress-response pathway is required for normal secretory-protein metabolism in C. elegans. J Cell Sci 126: 4136–4146. doi: 10.1242/jcs.123000 23843615
43. Berman K, McKay J, Avery L, Cobb M (2001) Isolation and characterization of pmk-(1–3): three p38 homologs in Caenorhabditis elegans. Mol Cell Biol Res Commun 4: 337–344. doi: 10.1006/mcbr.2001.0300 11703092
44. Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2: e183. doi: 10.1371/journal.pgen.0020183 17096597
45. Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G, Kuhlow D, et al. (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15: 451–465. doi: 10.1016/j.cmet.2012.02.013 22482728
46. Kwon G, Lee J, Lim YH (2016) Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 6: 31713. doi: 10.1038/srep31713 27531646
47. Singh V, Aballay A (2006) Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc Natl Acad Sci U S A 103: 13092–13097. doi: 10.1073/pnas.0604050103 16916933
48. Begun J, Gaiani JM, Rohde H, Mack D, Calderwood SB, Ausubel FM, et al. (2007) Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog 3: e57. doi: 10.1371/journal.ppat.0030057 17447841
49. Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, et al. (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297: 623–626. doi: 10.1126/science.1073759 12142542
50. Richardson CE, Kooistra T, Kim DH (2010) An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463: 1092–1095. doi: 10.1038/nature08762 20182512
51. Lee J, Sun C, Zhou Y, Lee J, Gokalp D, Herrema H, et al. (2011) p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med 17: 1251–1260. doi: 10.1038/nm.2449 21892182
52. Piperi C, Adamopoulos C, Papavassiliou AG (2016) XBP1: A Pivotal Transcriptional Regulator of Glucose and Lipid Metabolism. Trends Endocrinol Metab 27: 119–122. doi: 10.1016/j.tem.2016.01.001 26803729
53. Sha H, He Y, Yang L, Qi L (2011) Stressed out about obesity: IRE1alpha-XBP1 in metabolic disorders. Trends Endocrinol Metab 22: 374–381. doi: 10.1016/j.tem.2011.05.002 21703863
54. Herbert TP, Laybutt DR (2016) A Reevaluation of the Role of the Unfolded Protein Response in Islet Dysfunction: Maladaptation or a Failure to Adapt? Diabetes 65: 1472–1480. doi: 10.2337/db15-1633 27222391
55. Henis-Korenblit S, Zhang P, Hansen M, McCormick M, Lee SJ, Cary M, et al. (2010) Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc Natl Acad Sci U S A 107: 9730–9735. doi: 10.1073/pnas.1002575107 20460307
56. Safra M, Fickentscher R, Levi-Ferber M, Danino YM, Haviv-Chesner A, Hansen M, et al. (2014) The FOXO transcription factor DAF-16 bypasses ire-1 requirement to promote endoplasmic reticulum homeostasis. Cell Metab 20: 870–881. doi: 10.1016/j.cmet.2014.09.006 25448701
57. Salzberg Y, Coleman AJ, Celestrin K, Cohen-Berkman M, Biederer T, Henis-Korenblit S, et al. (2017) Reduced Insulin/Insulin-Like Growth Factor Receptor Signaling Mitigates Defective Dendrite Morphogenesis in Mutants of the ER Stress Sensor IRE-1. PLoS Genet 13: e1006579. doi: 10.1371/journal.pgen.1006579 28114319
58. Chang JT, Kumsta C, Hellman AB, Adams LM, Hansen M (2017) Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. Elife 6.
59. Palmisano NJ, Rosario N, Wysocki M, Hong M, Grant B, Melendez A (2017) The recycling endosome protein RAB-10 promotes autophagic flux and localization of the transmembrane protein ATG-9. Autophagy 13: 1742–1753. doi: 10.1080/15548627.2017.1356976 28872980
60. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11: 867–880. doi: 10.1080/15548627.2015.1034410 25836756
61. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94. 4366476
62. Song S, Zhang B, Sun H, Li X, Xiang Y, Liu Z, et al. (2010) A Wnt-Frz/Ror-Dsh pathway regulates neurite outgrowth in Caenorhabditis elegans. PLoS Genet 6.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 9
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon
- Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
- Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II
- Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences