PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning
Autoři:
Hai Wei aff001; Eric J. Lambie aff001; Daniel S. Osório aff003; Ana X. Carvalho aff003; Barbara Conradt aff001
Působiště autorů:
Department Biology II, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadener, Planegg-Martinsried, Germany
aff001; Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
aff002; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
aff003; CIPSM–Center for Integrated Protein Science Munich, Butenandtstraße, München, Germany
aff004
Vyšlo v časopise:
PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning. PLoS Genet 16(9): e32767. doi:10.1371/journal.pgen.1008912
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008912
Souhrn
The mechanism(s) through which mammalian kinase MELK promotes tumorigenesis is not understood. We find that the C. elegans orthologue of MELK, PIG-1, promotes apoptosis by partitioning an anti-apoptotic factor. The C. elegans NSM neuroblast divides to produce a larger cell that differentiates into a neuron and a smaller cell that dies. We find that in this context, PIG-1 MELK is required for partitioning of CES-1 Snail, a transcriptional repressor of the pro-apoptotic gene egl-1 BH3-only. pig-1 MELK is controlled by both a ces-1 Snail- and par-4 LKB1-dependent pathway, and may act through phosphorylation and cortical enrichment of nonmuscle myosin II prior to neuroblast division. We propose that pig-1 MELK-induced local contractility of the actomyosin network plays a conserved role in the acquisition of the apoptotic fate. Our work also uncovers an auto-regulatory loop through which ces-1 Snail controls its own activity through the formation of a gradient of CES-1 Snail protein.
Klíčová slova:
Apoptosis – Caenorhabditis elegans – Cell cycle and cell division – Fluorescence imaging – Metaphase – Myosins – Neuroblasts – Phosphorylation
Zdroje
1. Heyer BS, Warsowe J, Solter D, Knowles BB, Ackerman SL. New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo. Mol Reprod Dev. 1997;47(2):148–56. doi: 10.1002/(SICI)1098-2795(199706)47:2<148::AID-MRD4>3.0.CO;2-M 9136115.
2. Gil M, Yang Y, Lee Y, Choi I, Ha H. Cloning and expression of a cDNA encoding a novel protein serine/threonine kinase predominantly expressed in hematopoietic cells. Gene. 1997;195(2):295–301. doi: 10.1016/s0378-1119(97)00181-9 9305775.
3. Ganguly R, Mohyeldin A, Thiel J, Kornblum HI, Beullens M, Nakano I. MELK-a conserved kinase: functions, signaling, cancer, and controversy. Clin Transl Med. 2015;4:11. doi: 10.1186/s40169-014-0045-y 25852826; PubMed Central PMCID: PMC4385133.
4. Jiang P, Zhang D. Maternal embryonic leucine zipper kinase (MELK): a novel regulator in cell cycle control, embryonic development, and cancer. Int J Mol Sci. 2013;14(11):21551–60. doi: 10.3390/ijms141121551 24185907; PubMed Central PMCID: PMC3856021.
5. Perry NA, Fialkowski KP, Kaoud TS, Kaya AI, Chen AL, Taliaferro JM, et al. Arrestin-3 interaction with maternal embryonic leucine-zipper kinase. Cell Signal. 2019;63:109366. doi: 10.1016/j.cellsig.2019.109366 31352007; PubMed Central PMCID: PMC6717526.
6. Beullens M, Vancauwenbergh S, Morrice N, Derua R, Ceulemans H, Waelkens E, et al. Substrate specificity and activity regulation of protein kinase MELK. J Biol Chem. 2005;280(48):40003–11. doi: 10.1074/jbc.M507274200 16216881.
7. Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P, Kig C, et al. MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem Cells. 2013;31(6):1051–63. doi: 10.1002/stem.1358 23404835; PubMed Central PMCID: PMC3744761.
8. Wang Y, Begley M, Li Q, Huang HT, Lako A, Eck MJ, et al. Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival. Proc Natl Acad Sci U S A. 2016;113(35):9810–5. doi: 10.1073/pnas.1606862113 27528663; PubMed Central PMCID: PMC5024598.
9. Pitner MK, Taliaferro JM, Dalby KN, Bartholomeusz C. MELK: a potential novel therapeutic target for TNBC and other aggressive malignancies. Expert Opin Ther Targets. 2017;21(9):849–59. doi: 10.1080/14728222.2017.1363183 28764577.
10. Lin A, Giuliano CJ, Sayles NM, Sheltzer JM. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials. Elife. 2017;6. doi: 10.7554/eLife.24179 28337968; PubMed Central PMCID: PMC5365317.
11. Toure BB, Giraldes J, Smith T, Sprague ER, Wang Y, Mathieu S, et al. Toward the Validation of Maternal Embryonic Leucine Zipper Kinase: Discovery, Optimization of Highly Potent and Selective Inhibitors, and Preliminary Biology Insight. J Med Chem. 2016;59(10):4711–23. doi: 10.1021/acs.jmedchem.6b00052 27187609.
12. Wang Y, Lee YM, Baitsch L, Huang A, Xiang Y, Tong H, et al. MELK is an oncogenic kinase essential for mitotic progression in basal-like breast cancer cells. Elife. 2014;3:e01763. doi: 10.7554/eLife.01763 24844244; PubMed Central PMCID: PMC4059381.
13. Wang Y, Li BB, Li J, Roberts TM, Zhao JJ. A Conditional Dependency on MELK for the Proliferation of Triple-Negative Breast Cancer Cells. iScience. 2018;9:149–60. doi: 10.1016/j.isci.2018.10.015 30391850; PubMed Central PMCID: PMC6215964.
14. Cordes S, Frank CA, Garriga G. The C. elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions. Development. 2006;133(14):2747–56. doi: 10.1242/dev.02447 16774992.
15. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4 6684600
16. Liro MJ, Morton DG, Rose LS. The kinases PIG-1 and PAR-1 act in redundant pathways to regulate asymmetric division in the EMS blastomere of C. elegans. Dev Biol. 2018;444(1):9–19. doi: 10.1016/j.ydbio.2018.08.016 30213539; PubMed Central PMCID: PMC6238631.
17. Morton DG, Hoose WA, Kemphues KJ. A genome-wide RNAi screen for enhancers of par mutants reveals new contributors to early embryonic polarity in Caenorhabditis elegans. Genetics. 2012;192(3):929–42. doi: 10.1534/genetics.112.143727 22887819; PubMed Central PMCID: PMC3522167.
18. Pacquelet A, Uhart P, Tassan JP, Michaux G. PAR-4 and anillin regulate myosin to coordinate spindle and furrow position during asymmetric division. J Cell Biol. 2015;210(7):1085–99. doi: 10.1083/jcb.201503006 26416962; PubMed Central PMCID: PMC4586735.
19. Ou G, Stuurman N, D'Ambrosio M, Vale RD. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science. 2010;330(6004):677–80. doi: 10.1126/science.1196112 20929735; PubMed Central PMCID: PMC3032534.
20. Denning DP, Hatch V, Horvitz HR. Programmed elimination of cells by caspase-independent cell extrusion in C. elegans. Nature. 2012;488(7410):226–30. doi: 10.1038/nature11240 22801495; PubMed Central PMCID: PMC3416925.
21. Hirose T, Horvitz HR. An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. Nature. 2013;500(7462):354–8. doi: 10.1038/nature12329 23851392; PubMed Central PMCID: PMC3748152.
22. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63. doi: 10.1146/annurev.biochem.75.103004.142702 16756488.
23. Chien SC, Brinkmann EM, Teuliere J, Garriga G. Caenorhabditis elegans PIG-1/MELK Acts in a Conserved PAR-4/LKB1 Polarity Pathway to Promote Asymmetric Neuroblast Divisions. Genetics. 2013;193(3):897–909. doi: 10.1534/genetics.112.148106 23267054; PubMed Central PMCID: PMC3584005.
24. Ellis RE, Horvitz HR. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development. 1991;112(2):591–603. 1794327
25. Hatzold J, Conradt B. Control of apoptosis by asymmetric cell division. PLoS Biol. 2008;6(4):e84. Epub 2008/04/11. 07-PLBI-RA-2604 [pii] doi: 10.1371/journal.pbio.0060084 18399720; PubMed Central PMCID: PMC2288629.
26. Metzstein MM, Horvitz HR. The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell. 1999;4(3):309–19. doi: 10.1016/s1097-2765(00)80333-0 10518212
27. Wei H, Yan B, Gagneur J, Conradt B. Caenorhabditis elegans CES-1 Snail Represses pig-1 MELK Expression To Control Asymmetric Cell Division. Genetics. 2017;206(4):2069–84. doi: 10.1534/genetics.117.202754 28652378; PubMed Central PMCID: PMC5560807.
28. Yan B, Memar N, Gallinger J, Conradt B. Coordination of cell proliferation and cell fate determination by CES-1 snail. PLoS Genet. 2013;9(10):e1003884. doi: 10.1371/journal.pgen.1003884 24204299; PubMed Central PMCID: PMC3814331.
29. Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56(1):110–56. doi: 10.1016/0012-1606(77)90158-0 838129
30. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44(6):817–29. doi: 10.1016/0092-8674(86)90004-8 3955651
31. Conradt B, Horvitz HR. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell. 1998;93(4):519–29. doi: 10.1016/s0092-8674(00)81182-4 9604928.
32. Conradt B, Horvitz HR. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell. 1999;98(3):317–27. doi: 10.1016/s0092-8674(00)81961-3 10458607.
33. Horvitz HR. Worms, life, and death (Nobel lecture). Chembiochem. 2003;4(8):697–711. doi: 10.1002/cbic.200300614 12898619.
34. Thellmann M, Hatzold J, Conradt B. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development. 2003;130(17):4057–71. doi: 10.1242/dev.00597 12874127.
35. Metzstein MM, Hengartner MO, Tsung N, Ellis RE, Horvitz HR. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature. 1996;382(6591):545–7. doi: 10.1038/382545a0 8700229
36. Chakraborty S, Lambie EJ, Bindu S, Mikeladze-Dvali T, Conradt B. Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential. Nat Commun. 2015;6:10126. doi: 10.1038/ncomms10126 26657541; PubMed Central PMCID: PMC4682117.
37. Lambie EJ, Conradt B. Deadly dowry: how engulfment pathways promote cell killing. Cell Death Differ. 2016;23(4):553–4. doi: 10.1038/cdd.2015.170 26868911; PubMed Central PMCID: PMC4986643.
38. Mishra N, Wei H, Conradt B. Caenorhabditis elegans ced-3 Caspase Is Required for Asymmetric Divisions That Generate Cells Programmed To Die. Genetics. 2018;210(3):983–98. doi: 10.1534/genetics.118.301500 30194072; PubMed Central PMCID: PMC6218217.
39. Zhou Z, Hartwieg E, Horvitz HR. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell. 2001;104(1):43–56. doi: 10.1016/s0092-8674(01)00190-8 11163239
40. Guo S, Kemphues KJ. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature. 1996;382(6590):455–8. doi: 10.1038/382455a0 8684486.
41. Offenburger SL, Bensaddek D, Murillo AB, Lamond AI, Gartner A. Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development. Sci Rep. 2017;7(1):4314. doi: 10.1038/s41598-017-04375-4 28659600; PubMed Central PMCID: PMC5489525.
42. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods. 2013;10(10):1028–34. doi: 10.1038/nmeth.2641 23995389; PubMed Central PMCID: PMC3905680.
43. Chugh P, Paluch EK. The actin cortex at a glance. J Cell Sci. 2018;131(14). doi: 10.1242/jcs.186254 30026344; PubMed Central PMCID: PMC6080608.
44. Hoege C, Hyman AA. Principles of PAR polarity in Caenorhabditis elegans embryos. Nat Rev Mol Cell Biol. 2013;14(5):315–22. doi: 10.1038/nrm3558 23594951.
45. Illukkumbura R, Bland T, Goehring NW. Patterning and polarization of cells by intracellular flows. Curr Opin Cell Biol. 2020;62:123–34. doi: 10.1016/j.ceb.2019.10.005 31760155; PubMed Central PMCID: PMC6968950.
46. Rose L, Gonczy P. Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook. 2014:1–43. doi: 10.1895/wormbook.1.30.2 25548889.
47. Cheeks RJ, Canman JC, Gabriel WN, Meyer N, Strome S, Goldstein B. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol. 2004;14(10):851–62. doi: 10.1016/j.cub.2004.05.022 15186741.
48. Folkmann AW, Seydoux G. Single-molecule study reveals the frenetic lives of proteins in gradients. Proc Natl Acad Sci U S A. 2018;115(38):9336–8. doi: 10.1073/pnas.1812248115 30181287; PubMed Central PMCID: PMC6156616.
49. Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM, Hyman AA, et al. Polarization of PAR proteins by advective triggering of a pattern-forming system. Science. 2011;334(6059):1137–41. doi: 10.1126/science.1208619 22021673.
50. Munro E, Nance J, Priess JR. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell. 2004;7(3):413–24. doi: 10.1016/j.devcel.2004.08.001 15363415.
51. Peglion F, Goehring NW. Switching states: dynamic remodelling of polarity complexes as a toolkit for cell polarization. Curr Opin Cell Biol. 2019;60:121–30. doi: 10.1016/j.ceb.2019.05.002 31295650; PubMed Central PMCID: PMC6906085.
52. Wu Y, Han B, Li Y, Munro E, Odde DJ, Griffin EE. Rapid diffusion-state switching underlies stable cytoplasmic gradients in the Caenorhabditis elegans zygote. Proc Natl Acad Sci U S A. 2018;115(36):E8440–E9. doi: 10.1073/pnas.1722162115 30042214; PubMed Central PMCID: PMC6130366.
53. Loyer N, Januschke J. Where does asymmetry come from? Illustrating principles of polarity and asymmetry establishment in Drosophila neuroblasts. Curr Opin Cell Biol. 2020;62:70–7. doi: 10.1016/j.ceb.2019.07.018 31698250.
54. Tsankova A, Pham TT, Garcia DS, Otte F, Cabernard C. Cell Polarity Regulates Biased Myosin Activity and Dynamics during Asymmetric Cell Division via Drosophila Rho Kinase and Protein Kinase N. Dev Cell. 2017;42(2):143–55 e5. doi: 10.1016/j.devcel.2017.06.012 28712722.
55. Cabernard C, Prehoda KE, Doe CQ. A spindle-independent cleavage furrow positioning pathway. Nature. 2010;467(7311):91–4. doi: 10.1038/nature09334 20811457; PubMed Central PMCID: PMC4028831.
56. Connell M, Cabernard C, Ricketson D, Doe CQ, Prehoda KE. Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts. Mol Biol Cell. 2011;22(22):4220–6. doi: 10.1091/mbc.E11-02-0173 21937716; PubMed Central PMCID: PMC3216648.
57. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66. doi: 10.1038/nrm757 11994736.
58. Amoyel M. Gut stem cells, a story of snails, flies and mice. EMBO J. 2015;34(10):1287–9. doi: 10.15252/embj.201591541 25863942; PubMed Central PMCID: PMC4491989.
59. Goossens S, Vandamme N, Van Vlierberghe P, Berx G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 2017;1868(2):584–91. doi: 10.1016/j.bbcan.2017.06.006 28669750.
60. Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol. 2010;11(12):849–60. doi: 10.1038/nrm3010 21102610; PubMed Central PMCID: PMC3941022.
61. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94. 4366476
62. Liu J, Maduzia LL, Shirayama M, Mello CC. NMY-2 maintains cellular asymmetry and cell boundaries, and promotes a SRC-dependent asymmetric cell division. Dev Biol. 2010;339(2):366–73. doi: 10.1016/j.ydbio.2009.12.041 20059995; PubMed Central PMCID: PMC2903000.
63. Hedgecock EM, Sulston JE, Thomson JN. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science. 1983;220(4603):1277–9. doi: 10.1126/science.6857247 6857247
64. Consortium CeDM. large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda). 2012;2(11):1415–25. doi: 10.1534/g3.112.003830 23173093; PubMed Central PMCID: PMC3484672.
65. Wueseke O, Zwicker D, Schwager A, Wong YL, Oegema K, Julicher F, et al. Polo-like kinase phosphorylation determines Caenorhabditis elegans centrosome size and density by biasing SPD-5 toward an assembly-competent conformation. Biol Open. 2016;5(10):1431–40. doi: 10.1242/bio.020990 27591191; PubMed Central PMCID: PMC5087692.
66. Shaham S, Reddien PW, Davies B, Horvitz HR. Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3. Genetics. 1999;153(4):1655–71. 10581274
67. Morton DG, Roos JM, Kemphues KJ. par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. Genetics. 1992;130(4):771–90. 1582558; PubMed Central PMCID: PMC1204928.
68. Audhya A, Hyndman F, McLeod IX, Maddox AS, Yates JR, 3rd, Desai A, et al. A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol. 2005;171(2):267–79. doi: 10.1083/jcb.200506124 16247027.
69. Mello C, Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–82. 8531738
70. Frokjaer-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S, LaBella M, et al. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods. 2014;11(5):529–34. doi: 10.1038/nmeth.2889 24820376; PubMed Central PMCID: PMC4126194.
71. Frokjaer-Jensen C, Davis MW, Ailion M, Jorgensen EM. Improved Mos1-mediated transgenesis in C. elegans. Nat Methods. 2012;9(2):117–8. doi: 10.1038/nmeth.1865 22290181; PubMed Central PMCID: PMC3725292.
72. Boulin T, Bessereau JL. Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protoc. 2007;2(5):1276–87. doi: 10.1038/nprot.2007.192 17546024.
73. Schnabel R, Hutter H, Moerman D, Schnabel H. Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev Biol. 1997;184(2):234–65. doi: 10.1006/dbio.1997.8509 9133433
74. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11. Epub 1998/03/05. doi: 10.1038/35888 9486653.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 9
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon
- Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
- Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II
- Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences