The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
Autoři:
Christos N. Velanis aff001; Pumi Perera aff001; Bennett Thomson aff002; Erica de Leau aff001; Shih Chieh Liang aff001; Ben Hartwig aff003; Alex Förderer aff003; Harry Thornton aff001; Pedro Arede aff001; Jiawen Chen aff001; Kimberly M. Webb aff004; Serin Gümüs aff005; Geert De Jaeger aff006; Clinton A. Page aff008; C. Nathan Hancock aff008; Christos Spanos aff004; Juri Rappsilber aff004; Philipp Voigt aff004; Franziska Turck aff003; Frank Wellmer aff002; Justin Goodrich aff001; Alexander Förderer aff003
Působiště autorů:
Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
aff001; Smurfit Institute of Genetics, Trinity College Dublin, Ireland
aff002; Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
aff003; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
aff004; Department of Biotechnology, Mannheim University of Applied Science, Mannheim, Germany
aff005; Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
aff006; VIB Center for Plant Systems Biology, Gent, Belgium
aff007; Department of Biology & Geology, University of South Carolina Aiken, Aiken, South Carolina, United States of America
aff008; Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
aff009; Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
aff009
Vyšlo v časopise:
The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2). PLoS Genet 16(5): e1008681. doi:10.1371/journal.pgen.1008681
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008681
Souhrn
A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through “domestication”–the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was. Here, we identify ALP2 genetically as a suppressor of Polycomb-group (PcG) mutant phenotypes and show that it arose from the second, DNA binding component of Harbinger transposases. Molecular analysis of PcG compromised backgrounds reveals that ALP genes oppose silencing and H3K27me3 deposition at key PcG target genes. Proteomic analysis reveals that ALP1 and ALP2 are components of a variant PRC2 complex that contains the four core components but lacks plant-specific accessory components such as the H3K27me3 reader LIKE HETEROCHROMATION PROTEIN 1 (LHP1). We show that the N-terminus of ALP2 interacts directly with ALP1, whereas the C-terminus of ALP2 interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1), a core component of PRC2. Proteomic analysis reveals that in alp2 mutant backgrounds ALP1 protein no longer associates with PRC2, consistent with a role for ALP2 in recruitment of ALP1. We suggest that the propensity of Harbinger TE to insert in gene-rich regions of the genome, together with the modular two component nature of their transposases, has predisposed them for domestication and incorporation into chromatin modifying complexes.
Klíčová slova:
Arabidopsis thaliana – DNA-binding proteins – Domestic animals – Flowering plants – Nucleases – Phenotypes – Protein interactions – Sequence alignment
Zdroje
1. Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nature Genetics. 2013;45(8):891–8. doi: 10.1038/ng.2684 23817568.
2. Kim MY, Zilberman D. DNA methylation as a system of plant genomic immunity. Trends Plant Sci. 2014;19(5):320–6. doi: 10.1016/j.tplants.2014.01.014 24618094.
3. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8(4):272–85. doi: 10.1038/nrg2072 17363976.
4. Burgyan J, Havelda Z. Viral suppressors of RNA silencing. Trends Plant Sci. 2011;16(5):265–72. doi: 10.1016/j.tplants.2011.02.010 21439890.
5. Cosby RL, Chang NC, Feschotte C. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev. 2019;33(17–18):1098–116. doi: 10.1101/gad.327312.119 31481535.
6. Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell. 2012;24(3):1242–55. doi: 10.1105/tpc.111.095232 22427337.
7. Butelli E, Licciardello C, Ramadugu C, Durand-Hulak M, Celant A, Reforgiato Recupero G, et al. Noemi Controls Production of Flavonoid Pigments and Fruit Acidity and Illustrates the Domestication Routes of Modern Citrus Varieties. Current biology: CB. 2019;29(1):158–64 e2. doi: 10.1016/j.cub.2018.11.040 30581020.
8. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene TB1. Nature Genetics. 2011;43(11):1160–3. doi: 10.1038/ng.942 21946354.
9. Jangam D, Feschotte C, Betran E. Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet. 2017;33(11):817–31. doi: 10.1016/j.tig.2017.07.011 28844698.
10. Hoen DR, Bureau TE. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol Biol Evol. 2015;32(6):1487–506. doi: 10.1093/molbev/msv042 25713212.
11. Casola C, Lawing AM, Betran E, Feschotte C. PIF-like transposons are common in Drosophila and have been repeatedly domesticated to generate new host genes. Mol Biol Evol. 2007;24(8):1872–88. doi: 10.1093/molbev/msm116 17556756.
12. Kapitonov VV, Jurka J. Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol. 2004;23(5):311–24. doi: 10.1089/104454904323090949 15169610.
13. Zhang X, Jiang N, Feschotte C, Wessler SR. PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics. 2004;166(2):971–86. doi: 10.1534/genetics.166.2.971 15020481.
14. Sinzelle L, Kapitonov VV, Grzela DP, Jursch T, Jurka J, Izsvak Z, et al. Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(12):4715–20. doi: 10.1073/pnas.0707746105 18339812.
15. Hancock CN, Zhang F, Wessler SR. Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily. Mob DNA. 2010;1(1):5. doi: 10.1186/1759-8753-1-5 20226077.
16. Yang G, Zhang F, Hancock CN, Wessler SR. Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(26):10962–7. doi: 10.1073/pnas.0702080104 17578919.
17. Duan CG, Wang X, Xie S, Pan L, Miki D, Tang K, et al. A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res. 2017;27(2):226–40. doi: 10.1038/cr.2016.147 27934869.
18. Liang SC, Hartwig B, Perera P, Mora-Garcia S, de Leau E, Thornton H, et al. Kicking against the PRCs—A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2. PLoS Genet. 2015;11(12):e1005660. doi: 10.1371/journal.pgen.1005660 26642436.
19. Mikulski P, Komarynets O, Fachinelli F, Weber APM, Schubert D. Characterization of the Polycomb-Group Mark H3K27me3 in Unicellular Algae. Front Plant Sci. 2017;8:607. doi: 10.3389/fpls.2017.00607 28491069.
20. Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H. Origin of the Polycomb Repressive Complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics. 2010;5(4):301–12. doi: 10.4161/epi.5.4.11608 20421736.
21. Weinhofer I, Hehenberger E, Roszak P, Hennig L, Kohler C. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet. 2010;6(10). doi: 10.1371/journal.pgen.1001152 20949070.
22. Zhao X, Xiong J, Mao F, Sheng Y, Chen X, Feng L, et al. RNAi-dependent Polycomb repression controls transposable elements in Tetrahymena. Genes Dev. 2019;33(5–6):348–64. doi: 10.1101/gad.320796.118 30808657. 30808657
23. Hennig L, Derkacheva M. Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet. 2009;25(9):414–23 doi: 10.1016/j.tig.2009.07.002 19716619.
24. Chen S, Jiao L, Shubbar M, Yang X, Liu X. Unique Structural Platforms of Suz12 Dictate Distinct Classes of PRC2 for Chromatin Binding. Mol Cell. 2018;69(5):840–52 e5. Epub 2018/03/03. doi: 10.1016/j.molcel.2018.01.039 29499137.
25. Conway E, Jerman E, Healy E, Ito S, Holoch D, Oliviero G, et al. A Family of Vertebrate-Specific Polycombs Encoded by the LCOR/LCORL Genes Balance PRC2 Subtype Activities. Mol Cell. 2018;70(3):408–21 e8. doi: 10.1016/j.molcel.2018.03.005 29628311.
26. Derkacheva M, Steinbach Y, Wildhaber T, Mozgova I, Mahrez W, Nanni P, et al. Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J. 2013;32(14):2073–85. doi: 10.1038/emboj.2013.145 23778966.
27. Xiao J, Jin R, Yu X, Shen M, Wagner JD, Pai A, et al. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nature Genetics. 2017. doi: 10.1038/ng.3937 28825728.
28. Zhou Y, Wang Y, Krause K, Yang T, Dongus JA, Zhang Y, et al. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nature Genetics. 2018;50(5):638–44. doi: 10.1038/s41588-018-0109-9 29700471.
29. Wang H, Liu C, Cheng J, Liu J, Zhang L, He C, et al. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of cis-regulatory Elements. PLoS Genet. 2016;12(1):e1005771. doi: 10.1371/journal.pgen.1005771 26760036.
30. Beh LY, Colwell LJ, Francis NJ. A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(18):E1063–71. doi: 10.1073/pnas.1118678109 22517748.
31. Kim SY, Lee J, Eshed-Williams L, Zilberman D, Sung ZR. EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLoS Genet. 2012;8(3):e1002512. doi: 10.1371/journal.pgen.1002512 22457632.
32. Li Z, Fu X, Wang Y, Liu R, He Y. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants. Nature Genetics. 2018;50(9):1254–61. doi: 10.1038/s41588-018-0190-0 30082786.
33. Wang Y, Gu X, Yuan W, Schmitz RJ, He Y. Photoperiodic control of the floral transition through a distinct Polycomb repressive complex. Dev Cell. 2014;28(6):727–36. doi: 10.1016/j.devcel.2014.01.029 24613395.
34. De Lucia F, Crevillen P, Jones AM, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(44):16831–6. doi: 10.1073/pnas.0808687105 18854416.
35. Hartwig B, James GV, Konrad K, Schneeberger K, Turck F. Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks. Plant Physiol. 2012;160(2):591–600. doi: 10.1104/pp.112.200311 22837357.
36. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature. 1997;386(6620):44–51. doi: 10.1038/386044a0 9052779.
37. Lopez-Vernaza M, Yang S, Muller R, Thorpe F, de Leau E, Goodrich J. Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the Polycomb group gene CURLY LEAF. PLoS One. 2012;7(2):e30715. doi: 10.1371/journal.pone.0030715 22363474.
38. Van Leene J, Eeckhout D, Cannoot B, De Winne N, Persiau G, Van De Slijke E, et al. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat Protoc. 2015;10(1):169–87. doi: 10.1038/nprot.2014.199 25521792.
39. Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, et al. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J. 2006;25(19):4638–49. doi: 10.1038/sj.emboj.7601311 16957776.
40. Calonje M, Sanchez R, Chen L, Sung ZR. EMBRYONIC FLOWER1 participates in Polycomb group-mediated AG gene silencing in Arabidopsis. Plant Cell. 2008;20(2):277–91. Epub 2008/02/19. doi: 10.1105/tpc.106.049957 18281509.
41. Yu JR, Lee CH, Oksuz O, Stafford JM, Reinberg D. PRC2 is high maintenance. Genes Dev. 2019;33(15–16):903–35. doi: 10.1101/gad.325050.119 31123062.
42. Healy E, Mucha M, Glancy E, Fitzpatrick DJ, Conway E, Neikes HK, et al. PRC2.1 and PRC2.2 Synergize to Coordinate H3K27 Trimethylation. Mol Cell. 2019;76(3):437–52 e6. doi: 10.1016/j.molcel.2019.08.012 31521505.
43. Hojfeldt JW, Hedehus L, Laugesen A, Tatar T, Wiehle L, Helin K. Non-core Subunits of the PRC2 Complex Are Collectively Required for Its Target-Site Specificity. Mol Cell. 2019;76(3):423–36 e3. doi: 10.1016/j.molcel.2019.07.031 31521506.
44. Hubner JM, Muller T, Papageorgiou DN, Mauermann M, Krijgsveld J, Russell RB, et al. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol. 2019;21(7):878–89. doi: 10.1093/neuonc/noz058 30923826.
45. Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu MF, et al. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell. 2011;20(4):430–43. doi: 10.1016/j.devcel.2011.03.019 21497757.
46. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, et al. An active DNA transposon family in rice. Nature. 2003;421(6919):163–7. doi: 10.1038/nature01214 12520302.
47. Hancock CN, Zhang F, Floyd K, Richardson AO, Lafayette P, Tucker D, et al. The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean. Plant Physiol. 2011;157(2):552–62. doi: 10.1104/pp.111.181206 21844309.
48. Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng. 2007;104(1):34–41. doi: 10.1263/jbb.104.34 17697981.
49. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant journal 1998;16(6):735–43. doi: 10.1046/j.1365-313x.1998.00343.x 10069079.
50. Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(45):E4859–68. doi: 10.1073/pnas.1323926111 25355905.
51. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. doi: 10.1093/nar/gkh340 15034147.
52. Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 2003;75(3):663–70. doi: 10.1021/ac026117i 12585499.
53. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods. 2007;4(9):709–12. doi: 10.1038/nmeth1060 17721543.
54. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–805. doi: 10.1021/pr101065j 21254760.
55. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. doi: 10.1038/nbt.1511 19029910.
56. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–40. doi: 10.1038/nmeth.3901 27348712.
57. Ouwerkerk PB, Meijer AH. Yeast one-hybrid screens for detection of transcription factor DNA interactions. Methods Mol Biol. 2011;678:211–27. doi: 10.1007/978-1-60761-682-5_16 20931383.
58. Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, et al. The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development. 2007;134(5):967–77. doi: 10.1242/dev.02792 17267444.
59. Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J, et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell. 2011;42(3):330–41. doi: 10.1016/j.molcel.2011.03.025 21549310.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 5
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum
- The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
- Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
- The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica