Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression
Autoři:
Adrian Santos-Ledo aff001; Sam Washer aff001; Tamil Dhanaseelan aff001; Lorraine Eley aff001; Ahlam Alqatani aff001; Paul W. Chrystal aff001; Tania Papoutsi aff001; Deborah J. Henderson aff001; Bill Chaudhry aff001
Působiště autorů:
Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
aff001
Vyšlo v časopise:
Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008782
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008782
Souhrn
The planar cell polarity pathway is required for heart development and whilst the functions of most pathway members are known, the roles of the jnk genes in cardiac morphogenesis remain unknown as mouse mutants exhibit functional redundancy, with early embryonic lethality of compound mutants. In this study zebrafish were used to overcome early embryonic lethality in mouse models and establish the requirement for Jnk in heart development. Whole mount in-situ hybridisation and RT-PCR demonstrated that evolutionarily conserved alternative spliced jnk1a and jnk1b transcripts were expressed in the early developing heart. Maternal zygotic null mutant zebrafish lines for jnk1a and jnk1b, generated using CRISPR-Cas9, revealed a requirement for jnk1a in formation of the proximal, first heart field (FHF)-derived portion of the cardiac ventricular chamber. Rescue of the jnk1a mutant cardiac phenotype was only possible by injection of the jnk1a EX7 Lg alternatively spliced transcript. Analysis of mutants indicated that there was a reduction in the size of the hand2 expression field in jnk1a mutants which led to a specific reduction in FHF ventricular cardiomyocytes within the anterior lateral plate mesoderm. Moreover, the jnk1a mutant ventricular defect could be rescued by injection of hand2 mRNA. This study reveals a novel and critical requirement for Jnk1 in heart development and highlights the importance of alternative splicing in vertebrate cardiac morphogenesis. Genetic pathways functioning through jnk1 may be important in human heart malformations with left ventricular hypoplasia.
Klíčová slova:
Alternative splicing – Cardiac ventricles – Cardiomyocytes – Embryos – Heart – Heart development – Reverse transcriptase-polymerase chain reaction – Zebrafish
Zdroje
1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12): 1890–900. doi: 10.1016/s0735-1097(02)01886-7 12084585
2. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK, Carriero NJ, Cheung YH, Deanfield J, DePalma S, Fakhro KA, Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R, Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE, Newburger JW, Parfenov M, Pe'er I, Porter G, Roberts AE, Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S, Tikhonova IR, Wang W, Warburton D, White PS, Williams IA, Zhao H, Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE, Lifton RP. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013 13;498(7453):220–3. doi: 10.1038/nature12141 23665959
3. Glessner JT, Bick AG, Ito K, Homsy J, Rodriguez-Murillo L, Fromer M, Mazaika E, Vardarajan B, Italia M, Leipzig J, DePalma SR, Golhar R, Sanders SJ, Yamrom B, Ronemus M, Iossifov I, Willsey AJ, State MW, Kaltman JR, White PS, Shen Y, Warburton D, Brueckner M, Seidman C, Goldmuntz E, Gelb BD, Lifton R, Seidman J, Hakonarson H, Chung WK. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 2014;115(10):884–896. doi: 10.1161/CIRCRESAHA.115.304458 25205790
4. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, Jin SC, Deanfield J, Giardini A, Porter GA Jr, Kim R, Bilguvar K, López-Giráldez F, Tikhonova I, Mane S, Romano-Adesman A, Qi H, Vardarajan B, Ma L, Daly M, Roberts AE, Russell MW, Mital S, Newburger JW, Gaynor JW, Breitbart RE, Iossifov I, Ronemus M, Sanders SJ, Kaltman JR, Seidman JG, Brueckner M, Gelb BD, Goldmuntz E, Lifton RP, Seidman CE, Chung WK. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262–6. doi: 10.1126/science.aac9396 26785492
5. Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, McRae J, Fitzgerald TW, Singh T, Swaminathan GJ, Prigmore E, Rajan D, Abdul-Khaliq H, Banka S, Bauer UM, Bentham J, Berger F, Bhattacharya S, Bu'Lock F, Canham N, Colgiu IG, Cosgrove C, Cox H, Daehnert I, Daly A, Danesh J, Fryer A, Gewillig M, Hobson E, Hoff K, Homfray T; INTERVAL Study, Kahlert AK, Ketley A, Kramer HH, Lachlan K, Lampe AK, Louw JJ, Manickara AK, Manase D, McCarthy KP, Metcalfe K, Moore C, Newbury-Ecob R, Omer SO, Ouwehand WH, Park SM, Parker MJ, Pickardt T, Pollard MO, Robert L, Roberts DJ, Sambrook J, Setchfield K, Stiller B, Thornborough C, Toka O, Watkins H, Williams D, Wright M, Mital S, Daubeney PE, Keavney B, Goodship J; UK10K Consortium, Abu-Sulaiman RM, Klaassen S, Wright CF, Firth HV, Barrett JC, Devriendt K, FitzPatrick DR, Brook JD; Deciphering Developmental Disorders Study, Hurles ME. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016 Sep;48(9):1060–5. doi: 10.1038/ng.3627 27479907
6. Henderson DJ, Phillips HM, Chaudhry B. Vang-like 2 and noncanonical Wnt signaling in outflow tract development. Trends Cardiovasc Med. 2006 Feb;16(2):38–45. doi: 10.1016/j.tcm.2005.11.005 16473760
7. Ramsbottom SA, Sharma V, Rhee HJ, Eley L, Phillips HM, Rigby HF, Dean C, Chaudhry B, Henderson DJ. Vangl2-regulated polarisation of second heart field-derived cells is required for outflow tract lengthening during cardiac development. PLoS Genet. 2014 Dec 18;10(12):e1004871. doi: 10.1371/journal.pgen.1004871 25521757
8. Leung C, Liu Y, Lu X, Kim M, Drysdale TA, Feng Q. Rac1 Signaling Is Required for Anterior Second Heart Field Cellular Organization and Cardiac Outflow Tract Development. J Am Heart Assoc. 2015 Dec 31;5(1).
9. Boczonadi V, Gillespie R, Keenan I, Ramsbottom SA, Donald-Wilson C, Al Nazer M, Humbert P, Schwarz RJ, Chaudhry B, Henderson DJ. Scrib:Rac1 interactions are required for the morphogenesis of the ventricular myocardium. Cardiovasc Res. 2014 Oct 1;104(1):103– doi: 10.1093/cvr/cvu193 25139745
10. Phillips HM, Mahendran P, Singh E, Anderson RH, Chaudhry B, Henderson DJ. Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc Res. 2013 Aug 1;99(3):452–60. doi: 10.1093/cvr/cvt132 23723064
11. Zeke A, Misheva M, Reményi A, Bogoyevitch MA. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev. 2016 Jul 27;80(3):793–835. doi: 10.1128/MMBR.00043-14 27466283
12. Khoo P, Allan K, Willoughby L, Brumby A, Richardson H. In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1–Rok–Myosin-II and JNK signalling. Disease Models & Mechanisms. 2013;6:661–678.
13. Longoni M, Moncini S, Cisternino M, Morella I, Ferraiuolo S, Russo S, Mannarino S, Brazzelli V, Coi P, Zippel R, Venturin M, Riva P. Noonan syndrome associated with both a new Jnk-activating familial SOS1 and a de novo RAF1 mutations. Am J Med Genet A. 2010 Sep;152A(9):2176–84. doi: 10.1002/ajmg.a.33564 20683980
14. Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017 Jul;18(7):437–451. doi: 10.1038/nrm.2017.27 28488700
15. Bogoyevitch MA.The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays. 2006 Sep;28(9):923–34. doi: 10.1002/bies.20458 16937364
16. Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 2006 Dec;70(4):1061–95. doi: 10.1128/MMBR.00025-06 17158707
17. Aouadi M, Binetruy B, Caron L, Le Marchand-Brustel Y, Bost F. Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimie. 2006 Sep;88(9):1091–8. doi: 10.1016/j.biochi.2006.06.003 16854512
18. Han SY, Kim SH, Heasley LE. Differential gene regulation by specific gain-of-function JNK1 proteins expressed in Swiss 3T3 fibroblasts. J Biol Chem. 2002 Dec 6;277(49):47167–74. doi: 10.1074/jbc.M204270200 12354774
19. Kuan C, Yang D, Roy D, Davis R, Rakic P, Flavell R. The Jnk1 and Jnk2 Protein Kinases Are Required for Regional Specific Apoptosis during Early Brain Development. Neuron. 1999;22: 667–676. doi: 10.1016/s0896-6273(00)80727-8 10230788
20. Sabapathya K, Jochuma W, Hochedlingera K, Changb L, Karinb M, Wagnera E. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mechanisms of Development. 1999; 89:115–124. doi: 10.1016/s0925-4773(99)00213-0 10559486
21. Chaudhry B, de la Pompa JL, Mercader N. The zebrafish as a model for cardiac development and regeneration. in The ESC Textbook of Cardiovascular Development. Perez-Pomerez JM and Kelly R eds, Oxford OUP, 2018
22. Tu S, Chi N. Zebrafish models in cardiac development and congenital heart birth defects. Differentiation. 2012 Jul;84(1):4–16. doi: 10.1016/j.diff.2012.05.005 22704690
23. Lazic S, Scott I. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev Biol. 2011 Jun 1;354(1):123–33. doi: 10.1016/j.ydbio.2011.03.028 21466801
24. Mosimann C, Panakova D, Werdich AA, Musso G, Burger A, Lawson KL, Carr LA, Nevis KR, Sabeh MK, Zhou Y, Davidson AJ, DiBiase A, Burns CE, Burns CG, MacRae CA, Zon LI. Chamber identity programs drive early functional partitioning of the heart. Nat Commun. 2015 Aug 26;6:8146 doi: 10.1038/ncomms9146 26306682
25. Yelon D, Ticho B, Halpern M, Ruvinsky I, Ho R, Silver L, Stainier D. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development. 2000 Jun;127(12):2573–82. 10821756
26. Schindler YL, Garske KM, Wang J, Firulli BA, Firulli AB, Poss KD, Yelon D. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development. 2014 Aug;141(16):3112–22. doi: 10.1242/dev.106336 25038045
27. Woods I, Kelly P, Chu F, Ngo-Hazelett P, Yan Y, Huang H, Postlethwait J, Talbot W. A Comparative Map of the Zebrafish Genome. Genome Res. Dec 2000; 10(12): 1903–1914. doi: 10.1101/gr.10.12.1903 11116086
28. Krens S, He S, Spaink H, Snaar-Jagalska B. Characterization and expression patterns of the MAPK family in zebrafish Gene Expression Patterns. 2006a;6:1019–1026
29. Zerbino Daniel R., Achuthan Premanand, Akanni Wasiu, Amode M. Ridwan, Barrell Daniel, Bhai Jyothish, et al. Ensembl 2018. Nucleic Acids Research, Volume 46, Issue D1, 4 January 2018, Pages D754–D761 doi: 10.1093/nar/gkx1098 29155950
30. Betts MJ, Russell RB. Amino acid properties and consequences of substitutions. In Bioinformatics for Geneticists, Barnes M.R., Gray I.C. eds, Wiley, 2003.
31. Harvey SE, Cheng C. Methods for Characterization of Alternative RNA Splicing. Methods Mol Biol. 2016;1402:229–241. doi: 10.1007/978-1-4939-3378-5_18 26721495
32. Burns CG, MacRae CA. Purification of hearts from zebrafish embryos. Biotechniques. 2006 Mar;40(3):274–278 16568816
33. de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, Bakkers J. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development. 2009 May;136(10):1633–41. doi: 10.1242/dev.030924 19395641
34. Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K. JNK phosphorylates paxillin and regulates cell migration. Nature. 2003 Jul 10;424(6945):219–23. doi: 10.1038/nature01745 12853963
35. Miyamoto Y, Torii T, Yamamori N, Eguchi T, Nagao M, Nakamura K, Tanoue A, Yamauchi J. Paxillin is the target of c-Jun N-terminal kinase in Schwann cells and regulates migration. Cell Signal. 2012 Nov;24(11):2061–9. doi: 10.1016/j.cellsig.2012.06.013 22750292
36. Wei W, Li H, Li N, Sun H, Li Q, Shen X. WNT5A/JNK signaling regulates pancreatic cancer cells migration by Phosphorylating Paxillin. Pancreatology. 2013 Jul-Aug;13(4):384–92. doi: 10.1016/j.pan.2013.05.008 23890137
37. Owen GR, Stoychev S, Achilonu I, Dirr HW. JNK1β1 is phosphorylated during expression in E. coli and in vitro by MKK4 at three identical novel sites. Biochem Biophys Res Commun. 2013 Mar 22;432(4):683–8. doi: 10.1016/j.bbrc.2013.02.018 23416355
38. Enomoto A, Suzuki N, Morita A, Ito M, Liu CQ, Matsumoto Y, Yoshioka K, Shiba T, Hosoi Y. Caspase-mediated cleavage of JNK during stress-induced apoptosis. Biochem Biophys Res Commun. 2003 Jul 11;306(4):837–42. doi: 10.1016/s0006-291x(03)01050-7 12821118
39. Tachibana H, Perrino C, Takaoka H, Davis RJ, Naga Prasad SV et al. 2006. JNK1 is required to preserve cardiac function in the early response to pressure overload. Biochem Biophys Res Commun 343: 1060–1066. doi: 10.1016/j.bbrc.2006.03.065 16579967
40. Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M et al. 2004. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 306:1558–1561. doi: 10.1126/science.1101909 15567863
41. Chaudhury H, Zakkar M, Boyle J, Cuhlmann S, van der Heiden K, Luong le A, Davis J, Platt A, Mason JC, Krams R, Haskard DO, Clark AR, Evans PC. c-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis. Arterioscler Thromb Vasc Biol. 2010 Mar;30(3):546–53. doi: 10.1161/ATVBAHA.109.201368 20056910
42. Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O'Hanlon D, Sung HK, Alvarez M, Talukder S, Pan Q, Mazzoni EO, Nedelec S, Wichterle H, Woltjen K, Hughes TR, Zandstra PW, Nagy A, Wrana JL, Blencowe BJ. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell. 2011 Sep 30;147(1):132–46. doi: 10.1016/j.cell.2011.08.023 21924763
43. Salomonis N, Nelson B, Vranizan K, Pico AR, Hanspers K, Kuchinsky A, Ta L, Mercola M, Conklin BR. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors.PLoS Comput Biol. 2009 Nov;5(11):e1000553. doi: 10.1371/journal.pcbi.1000553 19893621
44. George R, Firulli A. Hand Factors in Cardiac Development. Anat Rec (Hoboken). 2019 Jan;302(1):101–107.
45. Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A, Hoshii Y, Tanaka N, Ricci R, Ishihara T, Esato K, Hamano K, Matsuzaki M. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med. 2005 Dec;11(12):1330–8. doi: 10.1038/nm1335 16311603
46. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, Davis RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996 Jun 3;15(11):2760–70. 8654373
47. Jaeschke A, Karasarides M, Ventura JJ, Ehrhardt A, Zhang C, Flavell R, Shokat K, Davis RJ. JNK2 is a positive regulator of the cJun transcription factor. Mol Cell. 2006 Sep 15;23(6):899–911. doi: 10.1016/j.molcel.2006.07.028 16973441
48. Jahangiri L, Sharpe M, Novikov N, González-Rosa JM, Borikova A, Nevis K, Paffett-Lugassy N, Zhao L, Adams M, Guner-Ataman B, Burns CE, Burns CG. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development. 2016 Jan 1;143(1):113–22. doi: 10.1242/dev.126136 26732840
49. Zhang J, Lin Y, Zhang Y, Lan Y, Lin C, Moon AM, Schwartz RJ, Martin JF, Wang F. Frs2alpha-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis. Development. 2008 Nov;135(21):3611–22. doi: 10.1242/dev.025361 18832393
50. Felker A, Prummel KD, Merks AM, Mickoleit M, Brombacher EC, Huisken J, Panáková D, Mosimann C. Continuous addition of progenitors forms the cardiac ventricle in zebrafish. Nat Commun. 2018 May 21;9(1):2001. doi: 10.1038/s41467-018-04402-6 29784942
51. Stefanovic S, Zaffran S. Mechanisms of retinoic acid signaling during cardiogenesis. Mech Dev. 2017 Feb;143:9–19. doi: 10.1016/j.mod.2016.12.002 28007475
52. Reiter J, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, Stainier D. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 1999;13(22):2983–95. doi: 10.1101/gad.13.22.2983 10580005
53. de Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K, Lagendijk AK, Schilling TF, Herzog W, Abdelilah-Seyfried S, Hammerschmidt M, Bakkers J. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res. 2012 Feb 17;110(4):578–87. doi: 10.1161/CIRCRESAHA.111.261172 22247485
54. Vincentz JW, Toolan KP, Zhang W, Firulli A. Hand factor ablation causes defective left ventricular chamber development and compromised adult cardiac function. PLoS Genet. 2017 Jul 21;13(7):e1006922. doi: 10.1371/journal.pgen.1006922 28732025
55. Crucean A, Alqahtani A, Barron DJ, Brawn WJ, Richardson RV, O'Sullivan J, Anderson RH, Henderson DJ, Chaudhry B. Re-evaluation of hypoplastic left heart syndrome from a developmental and morphological perspective. Orphanet J Rare Dis. 2017 Aug 10;12(1):138. doi: 10.1186/s13023-017-0683-4 28793912
56. Chaudhry B, Henderson D, Anderson R. Double-outlet right ventricle is not hypoplastic left heart syndrome. Nat Genet. 2019 Feb;51(2):198.
57. Westerfield M. (2000). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed., Univ. of Oregon Press, Eugene.
58. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Dev Dyn. Stages of embryonic development of the zebrafish. 1995 Jul;203(3):253–310.
59. Hwang WY Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9. doi: 10.1038/nbt.2501 23360964
60. Moreno-Mateos* Miguel A., Vejnar* Charles E., Beaudoin Jean-Denis, Fernandez Juan P., Mis Emily K., Khokha Mustafa K and Giraldez Antonio J. CRISPRscan: Designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo. Nature Methods 2015
61. Santos-Ledo A, Cavodeassi F, Carreno H, Aijon J, Arevalo R. Ethanol alters gene expression and cell organization during optic vesicle evagination. Neuroscience. 2013;250:493–506. doi: 10.1016/j.neuroscience.2013.07.036 23892006
62. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012 Jun 28;9(7):676–82. doi: 10.1038/nmeth.2019 22743772
63. Villefranc JA, Amigo J, Lawson ND. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn. 2007;236(11):3077–87. doi: 10.1002/dvdy.21354 17948311
64. Houk AR, Yelon D. Strategies for analyzing cardiac phenotypes in the zebrafish embryo. Methods Cell Biol. 2016;134:335–68. doi: 10.1016/bs.mcb.2016.03.002 27312497
65. Holtzman NG, Schoenebeck JJ, Tsai HJ, Yelon D. Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development. 2007;134(12):2379–86. doi: 10.1242/dev.02857 17537802
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 5
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- „Jednohubky“ z klinického výzkumu – 2024/44
Nejčtenější v tomto čísle
- The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
- Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
- The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica
- Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy