Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development
Autoři:
Paolo Maccallini aff001; Francesca Bavasso aff001; Livia Scatolini aff001; Elisabetta Bucciarelli aff002; Gemma Noviello aff001; Veronica Lisi aff001; Valeria Palumbo aff001; Simone D'Angeli aff003; Stefano Cacchione aff001; Giovanni Cenci aff001; Laura Ciapponi aff001; James G. Wakefield aff005; Maurizio Gatti aff001; Grazia Daniela Raffa aff001
Působiště autorů:
Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
aff001; Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
aff002; Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
aff003; Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy
aff004; Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, United Kingdom
aff005
Vyšlo v časopise:
Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008815
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008815
Souhrn
Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease.
Klíčová slova:
Drosophila melanogaster – Eyes – Imaginal discs – Larvae – Phenotypes – RNA interference – Small nuclear RNA – Eye development
Zdroje
1. Girard C, Verheggen C, Neel H, Cammas A, Vagner S, et al. (2008) Characterization of a short isoform of human Tgs1 hypermethylase associating with small nucleolar ribonucleoprotein core proteins and produced by limited proteolytic processing. J Biol Chem 283: 2060–2069.
2. Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonne R (2002) Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell 9: 891–901.
3. Wurth L, Gribling-Burrer AS, Verheggen C, Leichter M, Takeuchi A, et al. (2014) Hypermethylated-capped selenoprotein mRNAs in mammals. Nucleic Acids Res 42: 8663–8677.
4. Chen L, Roake CM, Galati A, Bavasso F, Micheli E, et al. (2020) Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep 30: 1358–1372 e1355.
5. Hausmann S, Zheng S, Costanzo M, Brost RL, Garcin D, et al. (2008) Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. J Biol Chem 283: 31706–31718.
6. Gao J, Wallis JG, Jewell JB, Browse J (2017) Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance. Plant Physiol 174: 1713–1727.
7. Komonyi O, Papai G, Enunlu I, Muratoglu S, Pankotai T, et al. (2005) DTL, the Drosophila homolog of PIMT/Tgs1 nuclear receptor coactivator-interacting protein/RNA methyltransferase, has an essential role in development. J Biol Chem 280: 12397–12404.
8. Komonyi O, Schauer T, Papai G, Deak P, Boros IM (2009) A product of the bicistronic Drosophila melanogaster gene CG31241, which also encodes a trimethylguanosine synthase, plays a role in telomere protection. J Cell Sci 122: 769–774.
9. Raffa GD, Siriaco G, Cugusi S, Ciapponi L, Cenci G, et al. (2009) The Drosophila modigliani (moi) gene encodes a HOAP-interacting protein required for telomere protection. Proceedings of the National Academy of Sciences of the United States of America 106: 2271–2276.
10. Jia Y, Viswakarma N, Crawford SE, Sarkar J, Sambasiva Rao M, et al. (2012) Early embryonic lethality of mice with disrupted transcription cofactor PIMT/NCOA6IP/Tgs1 gene. Mech Dev 129: 193–207.
11. Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW (2000) PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101: 187–198.
12. Mouaikel J, Narayanan U, Verheggen C, Matera AG, Bertrand E, et al. (2003) Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron. EMBO Rep 4: 616–622.
13. Gruss OJ, Meduri R, Schilling M, Fischer U (2017) UsnRNP biogenesis: mechanisms and regulation. Chromosoma 126: 577–593.
14. Carissimi C, Saieva L, Gabanella F, Pellizzoni L (2006) Gemin8 is required for the architecture and function of the survival motor neuron complex. J Biol Chem 281: 37009–37016.
15. Franke J, Gehlen J, Ehrenhofer-Murray AE (2008) Hypermethylation of yeast telomerase RNA by the snRNA and snoRNA methyltransferase Tgs1. J Cell Sci 121: 3553–3560.
16. Tang W, Kannan R, Blanchette M, Baumann P (2012) Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature 484: 260–264.
17. Beattie CE, Kolb SJ (2018) Spinal muscular atrophy: Selective motor neuron loss and global defect in the assembly of ribonucleoproteins. Brain Res 1693: 92–97.
18. Ruggiu M, McGovern VL, Lotti F, Saieva L, Li DK, et al. (2012) A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 32: 126–138.
19. Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, et al. (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133: 585–600.
20. Lotti F, Imlach WL, Saieva L, Beck ES, Hao le T, et al. (2012) An SMN-dependent U12 splicing event essential for motor circuit function. Cell 151: 440–454.
21. Garcia EL, Wen Y, Praveen K, Matera AG (2016) Transcriptomic comparison of Drosophila snRNP biogenesis mutants reveals mutant-specific changes in pre-mRNA processing: implications for spinal muscular atrophy. RNA 22: 1215–1227.
22. Rizzo F, Nizzardo M, Vashisht S, Molteni E, Melzi V, et al. (2019) Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and motif analysis of human motor neurons. Brain 142: 276–294.
23. Van Alstyne M, Simon CM, Sardi SP, Shihabuddin LS, Mentis GZ, et al. (2018) Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy. Genes Dev 32: 1045–1059.
24. Simon CM, Dai Y, Van Alstyne M, Koutsioumpa C, Pagiazitis JG, et al. (2017) Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. Cell Rep 21: 3767–3780.
25. Simon CM, Van Alstyne M, Lotti F, Bianchetti E, Tisdale S, et al. (2019) Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy. Cell Rep 29: 3885–3901 e3885.
26. McWhorter ML, Monani UR, Burghes AH, Beattie CE (2003) Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol 162: 919–931.
27. Fallini C, Donlin-Asp PG, Rouanet JP, Bassell GJ, Rossoll W (2016) Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons. J Neurosci 36: 3811–3820.
28. Donlin-Asp PG, Bassell GJ, Rossoll W (2016) A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 39: 53–61.
29. Donlin-Asp PG, Rossoll W, Bassell GJ (2017) Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett 591: 1508–1525.
30. Kariya S, Obis T, Garone C, Akay T, Sera F, et al. (2014) Requirement of enhanced Survival Motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest 124: 785–800.
31. Grice SJ, Liu JL (2011) Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila. PLoS Genet 7: e1002030.
32. Chang WF, Xu J, Chang CC, Yang SH, Li HY, et al. (2015) SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct 220: 1539–1553.
33. Walker MP, Rajendra TK, Saieva L, Fuentes JL, Pellizzoni L, et al. (2008) SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain. Hum Mol Genet 17: 3399–3410.
34. Anderton RS, Meloni BP, Mastaglia FL, Boulos S (2013) Spinal muscular atrophy and the antiapoptotic role of survival of motor neuron (SMN) protein. Mol Neurobiol 47: 821–832.
35. Zhao DY, Gish G, Braunschweig U, Li Y, Ni Z, et al. (2016) SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 529: 48–53.
36. Kannan A, Bhatia K, Branzei D, Gangwani L (2018) Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy. Nucleic Acids Res 46: 8326–8346.
37. Borg RM, Fenech Salerno B, Vassallo N, Bordonne R, Cauchi RJ (2016) Disruption of snRNP biogenesis factors Tgs1 and pICln induces phenotypes that mirror aspects of SMN-Gemins complex perturbation in Drosophila, providing new insights into spinal muscular atrophy. Neurobiol Dis 94: 245–258.
38. Raimer AC, Gray KM, Matera AG (2017) SMN—A chaperone for nuclear RNP social occasions? RNA Biol 14: 701–711.
39. Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, et al. (2006) Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell 17: 3221–3231.
40. Palumbo V, Pellacani C, Heesom KJ, Rogala KB, Deane CM, et al. (2015) Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex [corrected]. Curr Biol 25: 1777–1783.
41. Matera AG, Raimer AC, Schmidt CA, Kelly JA, Droby GN, et al. (2019) Composition of the Survival Motor Neuron (SMN) Complex in Drosophila melanogaster. G3 (Bethesda) 9: 491–503.
42. Lanfranco M, Cacciottolo R, Borg RM, Vassallo N, Juge F, et al. (2017) Novel interactors of the Drosophila Survival Motor Neuron (SMN) Complex suggest its full conservation. FEBS Lett 591: 3600–3614.
43. Di Giorgio ML, Esposito A, Maccallini P, Micheli E, Bavasso F, et al. (2017) WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates phenotypic defects in SMA models. Neurobiology of Disease 105: 42–50.
44. Chang HC, Dimlich DN, Yokokura T, Mukherjee A, Kankel MW, et al. (2008) Modeling spinal muscular atrophy in Drosophila. PLoS One 3: e3209.
45. Sen A, Yokokura T, Kankel MW, Dimlich DN, Manent J, et al. (2011) Modeling spinal muscular atrophy in Drosophila links Smn to FGF signaling. J Cell Biol 192: 481–495.
46. Praveen K, Wen Y, Gray KM, Noto JJ, Patlolla AR, et al. (2014) SMA-Causing Missense Mutations in Survival motor neuron (Smn) Display a Wide Range of Phenotypes When Modeled in Drosophila. PLoS Genet 10: e1004489.
47. Praveen K, Wen Y, Matera AG (2012) A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell Rep 1: 624–631.
48. Imlach WL, Beck ES, Choi BJ, Lotti F, Pellizzoni L, et al. (2012) SMN is required for sensory-motor circuit function in Drosophila. Cell 151: 427–439.
49. Spring AM, Raimer AC, Hamilton CD, Schillinger MJ, Matera AG (2019) Comprehensive Modeling of Spinal Muscular Atrophy in Drosophila melanogaster. Front Mol Neurosci 12: 113.
50. Luan H, Lemon WC, Peabody NC, Pohl JB, Zelensky PK, et al. (2006) Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J Neurosci 26: 573–584.
51. Loveall BJ, Deitcher DL (2010) The essential role of bursicon during Drosophila development. BMC Dev Biol 10: 92.
52. Mouaikel J, Bujnicki JM, Tazi J, Bordonne R (2003) Sequence-structure-function relationships of Tgs1, the yeast snRNA/snoRNA cap hypermethylase. Nucleic Acids Res 31: 4899–4909.
53. Fan Y, Wang S, Hernandez J, Yenigun VB, Hertlein G, et al. (2014) Genetic models of apoptosis-induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in Drosophila. PLoS Genet 10: e1004131.
54. Callaerts P, Leng S, Clements J, Benassayag C, Cribbs D, et al. (2001) Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J Neurobiol 46: 73–88.
55. Zhu J, Palliyil S, Ran C, Kumar JP (2017) Drosophila Pax6 promotes development of the entire eye-antennal disc, thereby ensuring proper adult head formation. Proc Natl Acad Sci U S A 114: 5846–5853.
56. Kumar JP, Moses K (2001) EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell 104: 687–697.
57. Duong HA, Wang CW, Sun YH, Courey AJ (2008) Transformation of eye to antenna by misexpression of a single gene. Mech Dev 125: 130–141.
58. Kumar JP (2018) The fly eye: Through the looking glass. Dev Dyn 247: 111–123.
59. Koushika SP, Lisbin MJ, White K (1996) ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. Curr Biol 6: 1634–1641.
60. Fan Y, Bergmann A (2010) The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ 17: 534–539.
61. Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14: 399–410.
62. Miller DT, Cagan RL (1998) Local induction of patterning and programmed cell death in the developing Drosophila retina. Development 125: 2327–2335.
63. Wolff T, Ready DF (1991) Cell death in normal and rough eye mutants of Drosophila. Development 113: 825–839.
64. Kronhamn J, Frei E, Daube M, Jiao R, Shi Y, et al. (2002) Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless. Development 129: 1015–1026.
65. Hamm J, Darzynkiewicz E, Tahara SM, Mattaj IW (1990) The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 62: 569–577.
66. Narayanan U, Achsel T, Luhrmann R, Matera AG (2004) Coupled in vitro import of U snRNPs and SMN, the spinal muscular atrophy protein. Mol Cell 16: 223–234.
67. Natalizio AH, Matera AG (2013) Identification and characterization of Drosophila Snurportin reveals a role for the import receptor Moleskin/importin-7 in snRNP biogenesis. Mol Biol Cell 24: 2932–2942.
68. Cauchi RJ, Sanchez-Pulido L, Liu JL (2010) Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies. Exp Cell Res 316: 2354–2364.
69. Chan YB, Miguel-Aliaga I, Franks C, Thomas N, Trulzsch B, et al. (2003) Neuromuscular defects in a Drosophila survival motor neuron gene mutant. Hum Mol Genet 12: 1367–1376.
70. Garcia EL, Lu Z, Meers MP, Praveen K, Matera AG (2013) Developmental arrest of Drosophila survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-containing genes. RNA 19: 1510–1516.
71. Lee L, Davies SE, Liu JL (2009) The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway. Dev Biol 332: 142–155.
72. Mollereau B, Perez-Garijo A, Bergmann A, Miura M, Gerlitz O, et al. (2013) Compensatory proliferation and apoptosis-induced proliferation: a need for clarification. Cell Death Differ 20: 181.
73. Su TT (2015) Non-autonomous consequences of cell death and other perks of being metazoan. AIMS Genet 2: 54–69.
74. Li DK, Tisdale S, Lotti F, Pellizzoni L (2014) SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 32: 22–29.
75. Verheggen C, Bertrand E (2012) CRM1 plays a nuclear role in transporting snoRNPs to nucleoli in higher eukaryotes. Nucleus 3: 132–137.
76. Martinez I, Hayes KE, Barr JA, Harold AD, Xie M, et al. (2017) An Exportin-1-dependent microRNA biogenesis pathway during human cell quiescence. Proc Natl Acad Sci U S A 114: E4961–E4970.
77. Dimitriadi M, Sleigh JN, Walker A, Chang HC, Sen A, et al. (2010) Conserved genes act as modifiers of invertebrate SMN loss of function defects. PLoS Genet 6: e1001172.
78. Opresko PL, Shay JW (2017) Telomere-associated aging disorders. Ageing Res Rev 33: 52–66.
79. Port F, Chen HM, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111: E2967–2976.
80. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, et al. (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194: 1029–1035.
81. Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104: 3312–3317.
82. Bruckner K, Kockel L, Duchek P, Luque CM, Rorth P, et al. (2004) The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev Cell 7: 73–84.
83. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, et al. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448: 151–156.
84. Lattao R, Bonaccorsi S, Guan X, Wasserman SA, Gatti M (2011) Tubby-tagged balancers for the Drosophila X and second chromosomes. Fly (Austin) 5: 369–370.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 5
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum
- The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
- Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
- The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica