GLP-1 Notch—LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1
Autoři:
Jian Chen aff001; Ariz Mohammad aff001; Nanette Pazdernik aff001; Huiyan Huang aff003; Beth Bowman aff004; Eric Tycksen aff006; Tim Schedl aff001
Působiště autorů:
Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
aff001; Current address, Integrated DNA Technologies, Coralville, Iowa, United States of America
aff002; Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
aff003; Department of Biology, Emory University, Atlanta, Georgia, United States of America
aff004; Current address, Vanderbilt University, Nashville, Tennessee, United States of America
aff005; Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
aff006
Vyšlo v časopise:
GLP-1 Notch—LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1. PLoS Genet 16(3): e32767. doi:10.1371/journal.pgen.1008650
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008650
Souhrn
Stem cell systems are essential for the development and maintenance of polarized tissues. Intercellular signaling pathways control stem cell systems, where niche cells signal stem cells to maintain the stem cell fate/self-renewal and inhibit differentiation. In the C. elegans germline, GLP-1 Notch signaling specifies the stem cell fate, employing the sequence-specific DNA binding protein LAG-1 to implement the transcriptional response. We undertook a comprehensive genome-wide approach to identify transcriptional targets of GLP-1 signaling. We expected primary response target genes to be evident at the intersection of genes identified as directly bound by LAG-1, from ChIP-seq experiments, with genes identified as requiring GLP-1 signaling for RNA accumulation, from RNA-seq analysis. Furthermore, we performed a time-course transcriptomics analysis following auxin inducible degradation of LAG-1 to distinguish between genes whose RNA level was a primary or secondary response of GLP-1 signaling. Surprisingly, only lst-1 and sygl-1, the two known target genes of GLP-1 in the germline, fulfilled these criteria, indicating that these two genes are the primary response targets of GLP-1 Notch and may be the sole germline GLP-1 signaling protein-coding transcriptional targets for mediating the stem cell fate. In addition, three secondary response genes were identified based on their timing following loss of LAG-1, their lack of a LAG-1 ChIP-seq peak and that their glp-1 dependent mRNA accumulation could be explained by a requirement for lst-1 and sygl-1 activity. Moreover, our analysis also suggests that the function of the primary response genes lst-1 and sygl-1 can account for the glp-1 dependent peak protein accumulation of FBF-2, which promotes the stem cell fate and, in part, for the spatial restriction of elevated LAG-1 accumulation to the stem cell region.
Klíčová slova:
Auxins – DNA transcription – Genomic signal processing – Germ cells – Gonads – Messenger RNA – Notch signaling – Stem cell niche
Zdroje
1. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006. pp. 1068–1074. doi: 10.1038/nature04956 16810241
2. Morrison SJ, Spradling AC. Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell. 2008. pp. 598–611. doi: 10.1016/j.cell.2008.01.038 18295578
3. Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell. 2011. pp. 851–862. doi: 10.1016/j.cell.2011.05.033 21663791
4. Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics. 2019;213: 1145–1188. doi: 10.1534/genetics.119.300238 31796552
5. Greenwald I, Kovall R. Notch signaling: genetics and structure. WormBook: the online review of C. elegans biology. 2013. pp. 1–28. doi: 10.1895/wormbook.1.10.2 23355521
6. Kimble J, Crittenden SL. Germline proliferation and its control. WormBook: the online review of C. elegans biology. 2005. pp. 1–14. doi: 10.1895/wormbook.1.13.1 18050413
7. Kimble J, Seidel H. C. elegans germline stem cells and their niche. StemBook. 2013. Available: http://www.ncbi.nlm.nih.gov/pubmed/24354021
8. Henderson ST, Gao D, Lambie EJ, Kimble J. lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development. 1994;120: 2913–2924. 7607081
9. Tax FE, Thomas JH. Cell-Cell Interactions: Receiving signals in the nematode embryo. Curr Biol. 1994;4: 914–916. doi: 10.1016/s0960-9822(00)00203-7 7850427
10. Nadarajan S, Govindan JA, McGovern M, Hubbard EJA, Greenstein D. MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development. 2009;136: 2223–2234. doi: 10.1242/dev.034603 19502484
11. Lambie EJ, Kimble J. Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development. 1991;112: 231–240. 1769331
12. Austin J, Kimble J. glp-1 Is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987;51: 589–599. doi: 10.1016/0092-8674(87)90128-0 3677168
13. Kodoyianni V, Maine EM, Kimble J. Molecular basis of loss-of-function mutations in the glp-1 gene of Caenorhabditis elegans. Mol Biol Cell. 1992;3: 1199–1213. doi: 10.1091/mbc.3.11.1199 1457827
14. Berry LW, Westlund B, Schedl T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development. 1997;124: 925–936. 9043073
15. Pepper ASR, Killian DJ, Hubbard EJA. Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics. 2003;163: 115–132. 12586701
16. Christensen S, Kodoyianni V, Bosenberg M, Friedman L, Kimble J. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development. 1996;122: 1373–1383. 8625826
17. Qiao L, Lissemore JL, Shu P, Smardon A, Gelber MB, Maine EM. Enhancers of glp-1, a gene required for cell-signaling in Caenorhabditis elegans, define a set of genes required for germline development. Genetics. 1995;141: 551–569. 8647392
18. Brou C, Logeat F, Lecourtois M, Vandekerckhove J, Kourilsky P, Schweisguth F, et al. Inhibition of the DNA-binding activity of Drosophila suppressor of hairless and of its human homolog, KBF2/RBP-Jκ, by direct protein-protein interaction with Drosophila hairless. Genes Dev. 1994;8: 2491–2503. doi: 10.1101/gad.8.20.2491 7958912
19. Tun T, Hamaguchi Y, Matsunami N, Furukawa T, Honjo T, Kawaichi M. Recognition sequence of a highly conserved DNA binding protein RBP-Jx. Nucleic Acids Res. 1994;22: 965–971. doi: 10.1093/nar/22.6.965 8152928
20. Kershner AM, Shin H, Hansen TJ, Kimble J. Discovery of two GLP-1/Notch target genes that account for the role of GLP-1/Notch signaling in stem cell maintenance. Proc Natl Acad Sci U S A. 2014;111: 3739–3744. doi: 10.1073/pnas.1401861111 24567412
21. Lee CH, Sorensen EB, Lynch TR, Kimble J. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. Elife. 2016;5. doi: 10.7554/eLife.18370 27705743
22. Shin H, Haupt KA, Kershner AM, Kroll-Conner P, Wickens M, Kimble J. SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans. PLoS Genet. 2017;13. doi: 10.1371/journal.pgen.1007121 29232700
23. Yoo AS, Bais C, Greenwald I. Crosstalk between the EGFR and LIN-12/Notch Pathways in C. elegans Vulval Development. Science (80-). 2004;303: 663–666. doi: 10.1126/science.1091639 14752159
24. Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, et al. A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature. 2002;417: 660–663. doi: 10.1038/nature754 12050669
25. Suh N, Crittenden SL, Goldstrohm A, Hook B, Thompson B, Wickens M, et al. FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics. 2009;181: 1249–1260. doi: 10.1534/genetics.108.099440 19221201
26. Voronina E, Paix A, Seydoux G. The P granule component PGL-1 promotes the localization and silencing activity of the PUF protein FBF-2 in germline stem cells. Dev. 2012;139: 3732–3740. doi: 10.1242/dev.083980 22991439
27. Haupt KA, Enright AL, Ferdous AS, Kershner AM, Shin H, Wickens M, et al. The molecular basis of LST-1 self-renewal activity and its control of stem cell pool size. Dev. 2019;146. doi: 10.1242/dev.181644 31515205
28. Kershner AM, Kimble J. Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci U S A. 2010;107: 3936–3941. doi: 10.1073/pnas.1000495107 20142496
29. Yoo AS, Greenwald I. Developmental biology: LIN-12/notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science (80-). 2005;310: 1330–1333. doi: 10.1126/science.1119481 16239437
30. Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J. FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell. 2004;7: 697–707. doi: 10.1016/j.devcel.2004.09.013 15525531
31. Lee MH, Hook B, Lamont LB, Wickens M, Kimble J. LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J. 2006;25: 88–96. doi: 10.1038/sj.emboj.7600901 16319922
32. Seelk S, Adrian-Kalchhauser I, Hargitai B, Hajduskova M, Gutnik S, Tursun B, et al. Increasing notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons. Elife. 2016;5. doi: 10.7554/eLife.15477.001
33. Hansen D, Hubbard EJA, Schedl T. Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline. Dev Biol. 2004;268: 342–357. doi: 10.1016/j.ydbio.2003.12.023 15063172
34. Hansen D, Wilson-Berry L, Dang T, Schedl T. Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development. 2004;131: 93–104. doi: 10.1242/dev.00916 14660440
35. Priess JR, Schnabel H, Schnabel R. The glp-1 locus and cellular interactions in early C. elegans embryos. Cell. 1987;51: 601–611. doi: 10.1016/0092-8674(87)90129-2 3677169
36. Priess JR. Notch signaling in the C. elegans embryo. WormBook: the online review of C. elegans biology. 2005. pp. 1–16. doi: 10.1895/wormbook.1.4.1 18050407
37. Ellis R, Schedl T. Sex determination in the germ line. WormBook: the online review of C. elegans biology. 2007. pp. 1–13. doi: 10.1895/wormbook.1.82.1
38. Zhang L, Ward JD, Cheng Z, Dernburg AF. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development. 2015;142: 4374–4384. doi: 10.1242/dev.129635 26552885
39. Fox PM, Vought VE, Hanazawa M, Lee MH, Maine EM, Sched T. Cyclin e and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline. Development. 2011;138: 2223–2234. doi: 10.1242/dev.059535 21558371
40. Zetka MC, Kawasaki I, Strome S, Müller F. Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev. 1999;13: 2258–2270. doi: 10.1101/gad.13.17.2258 10485848
41. Fox PM, Schedl T. Analysis of germline stem cell differentiation following loss of GLP-1 notch activity in Caenorhabditis elegans. Genetics. 2015;201: 167–184. doi: 10.1534/genetics.115.178061 26158953
42. Lee CH, Shin H, Kimble J. Dynamics of Notch-Dependent Transcriptional Bursting in Its Native Context. Dev Cell. 2019;50: 426–435.e4. doi: 10.1016/j.devcel.2019.07.001 31378588
43. Spike CA, Coetzee D, Eichten C, Wang X, Hansen D, Greenstein D. The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of caenorhabditis elegans oocytes. Genetics. 2014;198: 1535–1558. doi: 10.1534/genetics.114.168831 25261698
44. Jungkamp AC, Stoeckius M, Mecenas D, Grün D, Mastrobuoni G, Kempa S, et al. In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol Cell. 2011;44: 828–840. doi: 10.1016/j.molcel.2011.11.009 22152485
45. Wright JE, Gaidatzis D, Senften M, Farley BM, Westhof E, Ryder SP, et al. A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1. EMBO J. 2011;30: 533–545. doi: 10.1038/emboj.2010.334 21169991
46. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol Cell. 2010;38: 576–589. doi: 10.1016/j.molcel.2010.05.004 20513432
47. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science (80-). 2010;330: 1775–1787. doi: 10.1126/science.1196914 21177976
48. Van Nostrand EL, Kim SK. Integrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions. Genome Res. 2013;23: 941–953. doi: 10.1101/gr.152876.112 23531767
49. Choi VN, Park SK, Hwang BJ. Clustered LAG-1 binding sites in lag-1/CSL are involved in regulating lag-1 expression during lin-12/Notch-dependent cell-fate specification. BMB Rep. 2013;46: 219–224. doi: 10.5483/BMBRep.2013.46.4.269 23615264
50. Berset T, Hoier EF, Battu G, Canevascini S, Hajnal A. Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science (80-). 2001;291: 1055–1058. doi: 10.1126/science.1055642 11161219
51. Neves A, Priess JR. The REF-1 family of bHLH transcription factors pattern C. elegans embryos through Notch-dependent and Notch-independent pathways. Dev Cell. 2005;8: 867–879. doi: 10.1016/j.devcel.2005.03.012 15935776
52. Cronan JE. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem. 1990;265: 10327–10333. 2113052
53. Ooi SL, Henikoff JG, Henikoff S. A native chromatin purification system for epigenomic profiling in Caenorhabditis elegans. Nucleic Acids Res. 2009;38. doi: 10.1093/nar/gkp1090 19966274
54. Watts JS, Morton DG, Kemphues KJ, Watts JL. The biotin-ligating protein BPL-1 is critical for lipid biosynthesis and polarization of the Caenorhabditis elegans embryo. J Biol Chem. 2018;293: 610–622. doi: 10.1074/jbc.M117.798553 29158261
55. Wang X, Olson JR, Rasoloson D, Ellenbecker M, Bailey J, Voronina E. Dynein light chain DLC-1 promotes localization and function of the PUF protein FBF-2 in germline progenitor cells. Dev. 2016;143: 4643–4653. doi: 10.1242/dev.140921 27864381
56. Bray SJ. Notch signalling: A simple pathway becomes complex. Nature Reviews Molecular Cell Biology. 2006. pp. 678–689. doi: 10.1038/nrm2009 16921404
57. Hsieh JJD, Hayward SD. Masking of the CBF1/RBPJ κ transcriptional repression domain by Epstein-Barr virus EBNA2. Science (80-). 1995;268: 560–563. doi: 10.1126/science.7725102 7725102
58. Bray SJ. Notch signalling in context. Nature Reviews Molecular Cell Biology. 2016. pp. 722–735. doi: 10.1038/nrm.2016.94 27507209
59. Lenstra TL, Holstege FCP. The discrepancy between chromatin factor location and effect. Nucl (United States). 2012;3. doi: 10.4161/nucl.19513 22572961
60. Cusanovich DA, Pavlovic B, Pritchard JK, Gilad Y. The Functional Consequences of Variation in Transcription Factor Binding. PLoS Genet. 2014;10. doi: 10.1371/journal.pgen.1004226 24603674
61. Li Y, Hibbs MA, Gard AL, Shylo NA, Yun K. Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and Hippo pathway effectors by Notch1. Stem Cells. 2012;30: 741–752. doi: 10.1002/stem.1030 22232070
62. Merritt C, Seydoux G. Transgenic solutions for the germline. WormBook. 2010; 1–21. doi: 10.1895/wormbook.1.148.1 20169625
63. Merritt C, Rasoloson D, Ko D, Seydoux G. 3′ UTRs Are the Primary Regulators of Gene Expression in the C. elegans Germline. Curr Biol. 2008;18: 1476–1482. doi: 10.1016/j.cub.2008.08.013 18818082
64. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77: 71–94. 4366476
65. Arribere JA, Bell RT, Fu BXH, Artiles KL, Hartman PS, Fire AZ. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in caenorhabditis elegans. Genetics. 2014;198: 837–846. doi: 10.1534/genetics.114.169730 25161212
66. Paix A, Folkmann A, Rasoloson D, Seydoux G. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9ribonucleoprotein complexes. Genetics. 2015;201: 47–54. doi: 10.1534/genetics.115.179382 26187122
67. Ward JD. Rapid and precise engineering of the caenorhabditis elegans genome with lethal mutation co-conversion and inactivation of NHEJ repair. Genetics. 2014;199: 363–377. doi: 10.1534/genetics.114.172361 25491644
68. Dickinson DJ, Pani AM, Heppert JK, Higgins CD, Goldstein B. Streamlined genome engineering with a self-excising drug selection cassette. Genetics. 2015;200: 1035–1049. doi: 10.1534/genetics.115.178335 26044593
69. Schwartz ML, Jorgensen EM. SapTrap, a toolkit for high-throughput CRISPR/Cas9 gene modification in Caenorhabditis elegans. Genetics. 2016;202: 1277–1288. doi: 10.1534/genetics.115.184275 26837755
70. Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: A homologous recombination-based method of genetic engineering. Nat Protoc. 2009;4: 206–223. doi: 10.1038/nprot.2008.227 19180090
71. Frøkjær-Jensen C, Davis MW, Ailion M, Jorgensen EM. Improved Mos1-mediated transgenesis in C. elegans. Nature Methods. 2012. pp. 117–118. doi: 10.1038/nmeth.1865 22290181
72. Kasimatis KR, Moerdyk-Schauwecker MJ, Phillips PC. Auxin-mediated sterility induction system for longevity and mating studies in Caenorhabditis elegans. G3 Genes, Genomes, Genet. 2018;8: 2655–2662. doi: 10.1534/g3.118.200278 29880556
73. Brenner JL, Schedl T. Germline stem cell differentiation entails regional control of cell fate regulator GLD-1 in Caenorhabditis elegans. Genetics. 2016;202: 1085–1103. doi: 10.1534/genetics.115.185678 26757772
74. Mohammad A, Vanden Broek K, Wang C, Daryabeigi A, Jantsch V, Hansen D, et al. Initiation of meiotic development is controlled by three post-transcriptional pathways in caenorhabditis elegans. Genetics. 2018;209: 1197–1224. doi: 10.1534/genetics.118.300985 29941619
75. Brodigan TM, Liu J i., Park M, Kipreos ET, Krause M. Cyclin E expression during development in Caenorhabditis elegans. Dev Biol. 2003;254: 102–115. doi: 10.1016/s0012-1606(02)00032-5 12606285
76. Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009;25: 1463–1465. doi: 10.1093/bioinformatics/btp184 19346324
77. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, et al. Metadata matters: Access to image data in the real world. Journal of Cell Biology. Rockefeller University Press; 2010. pp. 777–782. doi: 10.1083/jcb.201004104 20513764
78. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. 2012. pp. 676–682. doi: 10.1038/nmeth.2019 22743772
79. Jones AR, Francis R, Schedl T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- ans sex-specific expression during Caenorhabditis elegans germline development. Dev Biol. 1996;180: 165–183. doi: 10.1006/dbio.1996.0293 8948583
80. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy. John Wiley & Sons, Ltd (10.1111); 2006. pp. 213–232. doi: 10.1111/j.1365-2818.2006.01706.x 17210054
81. Berkseth M, Ikegami K, Arur S, Lieb JD, Zarkower D. TRA-1 ChIP-seq reveals regulators of sexual differentiation and multilevel feedback in nematode sex determination. Proc Natl Acad Sci U S A. 2013;110: 16033–16038. doi: 10.1073/pnas.1312087110 24046365
82. Gerace E, Moazed D. Affinity Pull-Down of Proteins Using Anti-FLAG M2 Agarose Beads. Methods in Enzymology. 2015. pp. 99–110. doi: 10.1016/bs.mie.2014.11.010 26096505
83. Chen X, Lu L, Qian S, Scalf M, Smith LM, Zhong X. Canonical and noncanonical actions of arabidopsis histone deacetylases in ribosomal RNA processing. Plant Cell. 2018;30: 134–152. doi: 10.1105/tpc.17.00626 29343504
84. Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nat Protoc. 2012;7: 1728–1740. doi: 10.1038/nprot.2012.101 22936215
85. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29: 15–21. doi: 10.1093/bioinformatics/bts635 23104886
86. Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30: 923–930. doi: 10.1093/bioinformatics/btt656 24227677
87. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26: 139–140. doi: 10.1093/bioinformatics/btp616 19910308
88. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015;43. doi: 10.1093/nar/gkv412 25925576
89. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47. doi: 10.1093/nar/gkv007 25605792
90. Kumar S, Egan BM, Kocsisova Z, Schneider DL, Murphy JT, Diwan A, et al. Lifespan Extension in C. elegans Caused by Bacterial Colonization of the Intestine and Subsequent Activation of an Innate Immune Response. Dev Cell. 2019;49: 100–117.e6. doi: 10.1016/j.devcel.2019.03.010 30965033
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 3
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Evidence of defined temporal expression patterns that lead a gram-negative cell out of dormancy
- A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions
- Correction: Mck1 kinase is a new player in the DNA damage checkpoint pathway
- The Lid/KDM5 histone demethylase complex activates a critical effector of the oocyte-to-zygote transition