A Snf1-related nutrient-responsive kinase antagonizes endocytosis in yeast
Autoři:
Jessica M. Tumolo aff001; Nathaniel L. Hepowit aff001; Samika S. Joshi aff001; Jason A. MacGurn aff001
Působiště autorů:
Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
aff001
Vyšlo v časopise:
A Snf1-related nutrient-responsive kinase antagonizes endocytosis in yeast. PLoS Genet 16(3): e32767. doi:10.1371/journal.pgen.1008677
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008677
Souhrn
Endocytosis is regulated in response to changing environmental conditions to adjust plasma membrane (PM) protein composition for optimal cell growth. Protein networks involved in cargo capture and sorting, membrane sculpting and deformation, and vesicle scission have been well-characterized, but less is known about the networks that sense extracellular cues and relay signals to trigger endocytosis of specific cargo. Hal4 and Hal5 are yeast Snf1-related kinases that were previously reported to regulate nutrient transporter stability by an unknown mechanism. Here we demonstrate that loss of Hal4 and Hal5 activates endocytosis of many different kinds of PM proteins, including Art1-mediated and Art1-independent endocytic events. Acute inhibition of Hal5 in the absence of Hal4 triggers rapid endocytosis, suggesting that Hal kinases function in a nutrient-sensing relay upstream of the endocytic response. Interestingly, Hal5 localizes to the PM, but shifts away from the cell surface in response to stimulation with specific nutrients. We propose that Hal5 functions as a nutrient-responsive regulator of PM protein stability, antagonizing endocytosis and promoting stability of endocytic cargos at the PM in nutrient-limiting conditions.
Klíčová slova:
Endocytosis – Membrane proteins – Phosphorylation – Protein transport – Sequence alignment – Statistical data – Vacuoles – Yeast
Zdroje
1. Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell. 2008;135(4):714–25. doi: 10.1016/j.cell.2008.09.025 18976803.
2. Guiney EL, Klecker T, Emr SD. Identification of the endocytic sorting signal recognized by the Art1-Rsp5 ubiquitin ligase complex. Mol Biol Cell. 2016;27(25):4043–54. Epub 2016/10/19. doi: 10.1091/mbc.E16-08-0570 27798240; PubMed Central PMCID: PMC5156545.
3. Ghaddar K, Merhi A, Saliba E, Krammer EM, Prévost M, André B. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases. Mol Cell Biol. 2014;34(24):4447–63. Epub 2014/09/29. doi: 10.1128/MCB.00699-14 25266656; PubMed Central PMCID: PMC4248734.
4. Gournas C, Saliba E, Krammer EM, Barthelemy C, Prévost M, André B. Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. Mol Biol Cell. 2017;28(21):2819–32. Epub 2017/08/16. doi: 10.1091/mbc.E17-02-0104 28814503; PubMed Central PMCID: PMC5638585.
5. Marchal C, Haguenauer-Tsapis R, Urban-Grimal D. Casein kinase I-dependent phosphorylation within a PEST sequence and ubiquitination at nearby lysines signal endocytosis of yeast uracil permease. J Biol Chem. 2000;275(31):23608–14. doi: 10.1074/jbc.M001735200 10811641.
6. Moharir A, Gay L, Appadurai D, Keener J, Babst M. Eisosomes are metabolically regulated storage compartments for APC-type nutrient transporters. Mol Biol Cell. 2018;29(17):2113–27. Epub 2018/06/21. doi: 10.1091/mbc.E17-11-0691 29927345; PubMed Central PMCID: PMC6232963.
7. Volland C, Urban-Grimal D, Géraud G, Haguenauer-Tsapis R. Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem. 1994;269(13):9833–41. 8144575.
8. Séron K, Blondel MO, Haguenauer-Tsapis R, Volland C. Uracil-induced down-regulation of the yeast uracil permease. J Bacteriol. 1999;181(6):1793–800. 10074071; PubMed Central PMCID: PMC93577.
9. Léon S, Haguenauer-Tsapis R. Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp Cell Res. 2009;315(9):1574–83. Epub 2008/12/03. doi: 10.1016/j.yexcr.2008.11.014 19070615.
10. Lauwers E, Erpapazoglou Z, Haguenauer-Tsapis R, André B. The ubiquitin code of yeast permease trafficking. Trends Cell Biol. 2010;20(4):196–204. doi: 10.1016/j.tcb.2010.01.004 20138522.
11. MacGurn JA, Hsu PC, Emr SD. Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem. 2012;81:231–59. Epub 2012/03/08. doi: 10.1146/annurev-biochem-060210-093619 22404628.
12. Goh LK, Huang F, Kim W, Gygi S, Sorkin A. Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol. 2010;189(5):871–83. doi: 10.1083/jcb.201001008 20513767; PubMed Central PMCID: PMC2878939.
13. Weinberg J, Drubin DG. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol. 2012;22(1):1–13. Epub 2011/10/20. doi: 10.1016/j.tcb.2011.09.001 22018597; PubMed Central PMCID: PMC3253927.
14. Schmid SL. Reciprocal regulation of signaling and endocytosis: Implications for the evolving cancer cell. J Cell Biol. 2017;216(9):2623–32. Epub 2017/07/03. doi: 10.1083/jcb.201705017 28674108; PubMed Central PMCID: PMC5584184.
15. Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in. Microb Cell. 2018;5(11):482–94. Epub 2018/09/29. doi: 10.15698/mic2018.11.655 30483520; PubMed Central PMCID: PMC6244292.
16. Vincent O, Townley R, Kuchin S, Carlson M. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 2001;15(9):1104–14. doi: 10.1101/gad.879301 11331606; PubMed Central PMCID: PMC312685.
17. Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci. 2008;13:2408–20. Epub 2008/01/01. doi: 10.2741/2854 17981722; PubMed Central PMCID: PMC2685184.
18. Becuwe M, Vieira N, Lara D, Gomes-Rezende J, Soares-Cunha C, Casal M, et al. A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. J Cell Biol. 2012;196(2):247–59. Epub 2012/01/16. doi: 10.1083/jcb.201109113 22249293; PubMed Central PMCID: PMC3265958.
19. O'Donnell AF, McCartney RR, Chandrashekarappa DG, Zhang BB, Thorner J, Schmidt MC. 2-Deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3. Mol Cell Biol. 2015;35(6):939–55. Epub 2014/12/29. doi: 10.1128/MCB.01183-14 25547292; PubMed Central PMCID: PMC4333089.
20. Llopis-Torregrosa V, Ferri-Blázquez A, Adam-Artigues A, Deffontaines E, van Heusden GP, Yenush L. Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein. J Biol Chem. 2016;291(29):14973–85. Epub 2016/06/03. doi: 10.1074/jbc.M116.733923 27261460; PubMed Central PMCID: PMC4946916.
21. Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell. 2013;49(6):1167–75. Epub 2013/02/28. doi: 10.1016/j.molcel.2013.01.035 23453806; PubMed Central PMCID: PMC3615143.
22. Waldhart AN, Dykstra H, Peck AS, Boguslawski EA, Madaj ZB, Wen J, et al. Phosphorylation of TXNIP by AKT Mediates Acute Influx of Glucose in Response to Insulin. Cell Rep. 2017;19(10):2005–13. doi: 10.1016/j.celrep.2017.05.041 28591573; PubMed Central PMCID: PMC5603216.
23. Hunter T, Plowman GD. The protein kinases of budding yeast: six score and more. Trends Biochem Sci. 1997;22(1):18–22. doi: 10.1016/s0968-0004(96)10068-2 9020587.
24. Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002;27(10):514–20. doi: 10.1016/s0968-0004(02)02179-5 12368087.
25. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, et al. A global protein kinase and phosphatase interaction network in yeast. Science. 2010;328(5981):1043–6. doi: 10.1126/science.1176495 20489023; PubMed Central PMCID: PMC3983991.
26. Bonenfant D, Schmelzle T, Jacinto E, Crespo JL, Mini T, Hall MN, et al. Quantitation of changes in protein phosphorylation: a simple method based on stable isotope labeling and mass spectrometry. Proc Natl Acad Sci U S A. 2003;100(3):880–5. Epub 2003/01/22. doi: 10.1073/pnas.232735599 12540831; PubMed Central PMCID: PMC298695.
27. MacGurn JA, Hsu PC, Smolka MB, Emr SD. TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell. 2011;147(5):1104–17. doi: 10.1016/j.cell.2011.09.054 22118465.
28. Schmidt A, Beck T, Koller A, Kunz J, Hall MN. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J. 1998;17(23):6924–31. doi: 10.1093/emboj/17.23.6924 9843498; PubMed Central PMCID: PMC1171040.
29. Gander S, Bonenfant D, Altermatt P, Martin DE, Hauri S, Moes S, et al. Identification of the rapamycin-sensitive phosphorylation sites within the Ser/Thr-rich domain of the yeast Npr1 protein kinase. Rapid Commun Mass Spectrom. 2008;22(23):3743–53. doi: 10.1002/rcm.3790 18980262.
30. Merhi A, Gérard N, Lauwers E, Prévost M, André B. Systematic mutational analysis of the intracellular regions of yeast Gap1 permease. PLoS One. 2011;6(4):e18457. Epub 2011/04/19. doi: 10.1371/journal.pone.0018457 21526172; PubMed Central PMCID: PMC3079708.
31. Merhi A, André B. Internal amino acids promote Gap1 permease ubiquitylation via TORC1/Npr1/14-3-3-dependent control of the Bul arrestin-like adaptors. Mol Cell Biol. 2012;32(22):4510–22. Epub 2012/09/10. doi: 10.1128/MCB.00463-12 22966204; PubMed Central PMCID: PMC3486192.
32. Eraso P, Mazón MJ, Portillo F. Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta. 2006;1758(2):164–70. Epub 2006/02/08. doi: 10.1016/j.bbamem.2006.01.010 16510118.
33. Lecchi S, Nelson CJ, Allen KE, Swaney DL, Thompson KL, Coon JJ, et al. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem. 2007;282(49):35471–81. Epub 2007/10/11. doi: 10.1074/jbc.M706094200 17932035.
34. Mason AB, Allen KE, Slayman CW. C-terminal truncations of the Saccharomyces cerevisiae PMA1 H+-ATPase have major impacts on protein conformation, trafficking, quality control, and function. Eukaryot Cell. 2014;13(1):43–52. Epub 2013/11/01. doi: 10.1128/EC.00201-13 24186948; PubMed Central PMCID: PMC3910955.
35. Mazón MJ, Eraso P, Portillo F. Specific phosphoantibodies reveal two phosphorylation sites in yeast Pma1 in response to glucose. FEMS Yeast Res. 2015;15(5):fov030. Epub 2015/05/27. doi: 10.1093/femsyr/fov030 26019146.
36. Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR, Serrano R. A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol. 1999;19(5):3328–37. doi: 10.1128/mcb.19.5.3328 10207057; PubMed Central PMCID: PMC84126.
37. Casado C, Yenush L, Melero C, Ruiz MeC, Serrano R, Pérez-Valle J, et al. Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Lett. 2010;584(11):2415–20. Epub 2010/04/20. doi: 10.1016/j.febslet.2010.04.042 20412803.
38. Hirasaki M, Horiguchi M, Numamoto M, Sugiyama M, Kaneko Y, Nogi Y, et al. Saccharomyces cerevisiae protein phosphatase Ppz1 and protein kinases Sat4 and Hal5 are involved in the control of subcellular localization of Gln3 by likely regulating its phosphorylation state. J Biosci Bioeng. 2011;111(3):249–54. doi: 10.1016/j.jbiosc.2010.11.013 21237705.
39. Pérez-Valle J, Jenkins H, Merchan S, Montiel V, Ramos J, Sharma S, et al. Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol. 2007;27(16):5725–36. Epub 2007/06/04. doi: 10.1128/MCB.01375-06 17548466; PubMed Central PMCID: PMC1952112.
40. Pérez-Valle J, Rothe J, Primo C, Martínez Pastor M, Ariño J, Pascual-Ahuir A, et al. Hal4 and Hal5 protein kinases are required for general control of carbon and nitrogen uptake and metabolism. Eukaryot Cell. 2010;9(12):1881–90. Epub 2010/10/15. doi: 10.1128/EC.00184-10 20952580; PubMed Central PMCID: PMC3008272.
41. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019. Epub 2019/04/12. doi: 10.1093/nar/gkz268 30976793.
42. Moravcevic K, Mendrola JM, Schmitz KR, Wang YH, Slochower D, Janmey PA, et al. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell. 2010;143(6):966–77. doi: 10.1016/j.cell.2010.11.028 21145462; PubMed Central PMCID: PMC3031122.
43. Coué M, Brenner SL, Spector I, Korn ED. Inhibition of actin polymerization by latrunculin A. FEBS Lett. 1987;213(2):316–8. doi: 10.1016/0014-5793(87)81513-2 3556584.
44. Kübler E, Riezman H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 1993;12(7):2855–62. 8335001; PubMed Central PMCID: PMC413538.
45. Engqvist-Goldstein AE, Drubin DG. Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol. 2003;19:287–332. doi: 10.1146/annurev.cellbio.19.111401.093127 14570572.
46. Nikko E, Sullivan JA, Pelham HRB. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO Rep. 2008;9(12):1216–21. embor2008199 [pii] doi: 10.1038/embor.2008.199 18953286; PubMed Central PMCID: PMC2575832.
47. Smardon AM, Kane PM. Loss of vacuolar H+-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p. J Biol Chem. 2014;289(46):32316–26. Epub 2014/09/30. doi: 10.1074/jbc.M114.574442 25271159; PubMed Central PMCID: PMC4231704.
48. Olivera-Couto A, Graña M, Harispe L, Aguilar PS. The eisosome core is composed of BAR domain proteins. Mol Biol Cell. 2011;22(13):2360–72. Epub 2011/05/18. doi: 10.1091/mbc.E10-12-1021 21593205; PubMed Central PMCID: PMC3128537.
49. Karotki L, Huiskonen JT, Stefan CJ, Ziółkowska NE, Roth R, Surma MA, et al. Eisosome proteins assemble into a membrane scaffold. J Cell Biol. 2011;195(5):889–902. doi: 10.1083/jcb.201104040 22123866; PubMed Central PMCID: PMC3257569.
50. Piao HL, Machado IM, Payne GS. NPFXD-mediated endocytosis is required for polarity and function of a yeast cell wall stress sensor. Mol Biol Cell. 2007;18(1):57–65. Epub 2006/10/25. doi: 10.1091/mbc.E06-08-0721 17065552; PubMed Central PMCID: PMC1751320.
51. Sardana R, Zhu L, Emr SD. Rsp5 Ubiquitin ligase-mediated quality control system clears membrane proteins mistargeted to the vacuole membrane. J Cell Biol. 2019;218(1):234–50. Epub 2018/10/25. doi: 10.1083/jcb.201806094 30361468; PubMed Central PMCID: PMC6314561.
52. Rossi G, Salminen A, Rice LM, Brünger AT, Brennwald P. Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. J Biol Chem. 1997;272(26):16610–7. doi: 10.1074/jbc.272.26.16610 9195974.
53. Lewis MJ, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HR. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell. 2000;11(1):23–38. doi: 10.1091/mbc.11.1.23 10637288; PubMed Central PMCID: PMC14754.
54. Robinson M, Poon PP, Schindler C, Murray LE, Kama R, Gabriely G, et al. The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast. Mol Biol Cell. 2006;17(4):1845–58. Epub 2006/02/01. doi: 10.1091/mbc.E05-09-0832 16452633; PubMed Central PMCID: PMC1415299.
55. Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol. 1995;128(5):779–92. doi: 10.1083/jcb.128.5.779 7533169; PubMed Central PMCID: PMC2120394.
56. Galan JM, Wiederkehr A, Seol JH, Haguenauer-Tsapis R, Deshaies RJ, Riezman H, et al. Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Mol Cell Biol. 2001;21(9):3105–17. doi: 10.1128/MCB.21.9.3105-3117.2001 11287615; PubMed Central PMCID: PMC86938.
57. Carroll SY, Stimpson HE, Weinberg J, Toret CP, Sun Y, Drubin DG. Analysis of yeast endocytic site formation and maturation through a regulatory transition point. Mol Biol Cell. 2012;23(4):657–68. Epub 2011/12/21. doi: 10.1091/mbc.E11-02-0108 22190733; PubMed Central PMCID: PMC3279393.
58. Spormann DO, Heim J, Wolf DH. Biogenesis of the yeast vacuole (lysosome). The precursor forms of the soluble hydrolase carboxypeptidase yscS are associated with the vacuolar membrane. J Biol Chem. 1992;267(12):8021–9. 1569061.
59. Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell. 2001;106(2):145–55. doi: 10.1016/s0092-8674(01)00434-2 11511343.
60. Prosser DC, Whitworth K, Wendland B. Quantitative analysis of endocytosis with cytoplasmic pHluorin chimeras. Traffic. 2010;11(9):1141–50. Epub 2010/06/15. doi: 10.1111/j.1600-0854.2010.01088.x 20626707; PubMed Central PMCID: PMC2919640.
61. Prosser DC, Wrasman K, Woodard TK, O'Donnell AF, Wendland B. Applications of pHluorin for Quantitative, Kinetic and High-throughput Analysis of Endocytosis in Budding Yeast. J Vis Exp. 2016;(116). Epub 2016/10/23. doi: 10.3791/54587 27805610; PubMed Central PMCID: PMC5092240.
62. Knight ZA, Shokat KM. Chemical genetics: where genetics and pharmacology meet. Cell. 2007;128(3):425–30. doi: 10.1016/j.cell.2007.01.021 17289560.
63. Shirra MK, McCartney RR, Zhang C, Shokat KM, Schmidt MC, Arndt KM. A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J Biol Chem. 2008;283(51):35889–98. Epub 2008/10/27. doi: 10.1074/jbc.M805325200 18955495; PubMed Central PMCID: PMC2602918.
64. Lee S, Ho HC, Tumolo JM, Hsu PC, MacGurn JA. Methionine triggers Ppz-mediated dephosphorylation of Art1 to promote cargo-specific endocytosis. J Cell Biol. 2019. Epub 2019/01/04. doi: 10.1083/jcb.201712144 30610170.
65. Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods. 2013;10(5):407–9. Epub 2013/03/24. doi: 10.1038/nmeth.2413 23524392; PubMed Central PMCID: PMC3811051.
66. Bright NJ, Thornton C, Carling D. The regulation and function of mammalian AMPK-related kinases. Acta Physiol (Oxf). 2009;196(1):15–26. Epub 2009/02/19. doi: 10.1111/j.1748-1716.2009.01971.x 19245655.
67. Hong SP, Leiper FC, Woods A, Carling D, Carlson M. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A. 2003;100(15):8839–43. Epub 2003/07/07. doi: 10.1073/pnas.1533136100 12847291; PubMed Central PMCID: PMC166400.
68. Elbert M, Rossi G, Brennwald P. The yeast par-1 homologs kin1 and kin2 show genetic and physical interactions with components of the exocytic machinery. Mol Biol Cell. 2005;16(2):532–49. Epub 2004/11/24. doi: 10.1091/mbc.E04-07-0549 15563607; PubMed Central PMCID: PMC545889.
69. Alvaro CG, Aindow A, Thorner J. Differential Phosphorylation Provides a Switch to Control How α-Arrestin Rod1 Down-regulates Mating Pheromone Response in Saccharomyces cerevisiae. Genetics. 2016;203(1):299–317. Epub 2016/02/26. doi: 10.1534/genetics.115.186122 26920760; PubMed Central PMCID: PMC4858781.
70. Chi RJ, Torres OT, Segarra VA, Lansley T, Chang JS, Newpher TM, et al. Role of Scd5, a protein phosphatase-1 targeting protein, in phosphoregulation of Sla1 during endocytosis. J Cell Sci. 2012;125(Pt 20):4728–39. Epub 2012/07/23. doi: 10.1242/jcs.098871 22825870; PubMed Central PMCID: PMC3517093.
71. Peng Y, Grassart A, Lu R, Wong CC, Yates J, Barnes G, et al. Casein kinase 1 promotes initiation of clathrin-mediated endocytosis. Dev Cell. 2015;32(2):231–40. doi: 10.1016/j.devcel.2014.11.014 25625208; PubMed Central PMCID: PMC4308670.
72. Morvan J, Rinaldi B, Friant S. Pkh1/2-dependent phosphorylation of Vps27 regulates ESCRT-I recruitment to endosomes. Mol Biol Cell. 2012;23(20):4054–64. Epub 2012/08/23. doi: 10.1091/mbc.E12-01-0001 22918958; PubMed Central PMCID: PMC3469520.
73. Lee S, Tumolo JM, Ehlinger AC, Jernigan KK, Qualls-Histed SJ, Hsu PC, et al. Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin. Elife. 2017;6. Epub 2017/11/13. doi: 10.7554/eLife.29176 29130884; PubMed Central PMCID: PMC5706963.
74. Zhao Y, Macgurn JA, Liu M, Emr S. The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress. Elife. 2013;2:e00459. doi: 10.7554/eLife.00459 23599894; PubMed Central PMCID: PMC3628405.
75. Nikko E, Pelham HRB. Arrestin-Mediated Endocytosis of Yeast Plasma Membrane Transporters. Traffic. 2009;10(12):1856–67. doi: 10.1111/j.1600-0854.2009.00990.x 19912579; PubMed Central PMCID: PMC2810449.
76. Prosser DC, Pannunzio AE, Brodsky JL, Thorner J, Wendland B, O'Donnell AF. α-Arrestins participate in cargo selection for both clathrin-independent and clathrin-mediated endocytosis. J Cell Sci. 2015;128(22):4220–34. Epub 2015/10/12. doi: 10.1242/jcs.175372 26459639; PubMed Central PMCID: PMC4712785.
77. Alvaro CG, O'Donnell AF, Prosser DC, Augustine AA, Goldman A, Brodsky JL, et al. Specific α-arrestins negatively regulate Saccharomyces cerevisiae pheromone response by down-modulating the G-protein-coupled receptor Ste2. Mol Cell Biol. 2014;34(14):2660–81. doi: 10.1128/MCB.00230-14 24820415; PubMed Central PMCID: PMC4097657.
78. O'Donnell AF, Huang L, Thorner J, Cyert MS. A Calcineurin-dependent Switch Controls the Trafficking Function of α-Arrestin Aly1/Art6. J Biol Chem. 2013;288(33):24063–80. doi: 10.1074/jbc.M113.478511 23824189; PubMed Central PMCID: PMC3745350.
79. O'Donnell A, Apffel A, Gardner R, Cyert M. Alpha-arrestins Aly1 and Aly2 regulate intracellular trafficking in response to nutrient signaling. Mol Biol Cell. 2010;21(20):3552–66. E10-07-0636 [pii] doi: 10.1091/mbc.E10-07-0636 20739461; PubMed Central PMCID: PMC2954120.
80. Schuberth C, Wedlich-Söldner R. Building a patchwork—The yeast plasma membrane as model to study lateral domain formation. Biochim Biophys Acta. 2015;1853(4):767–74. Epub 2014/12/22. doi: 10.1016/j.bbamcr.2014.12.019 25541280.
81. Grossmann G, Opekarová M, Malinsky J, Weig-Meckl I, Tanner W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 2007;26(1):1–8. Epub 2006/12/14. doi: 10.1038/sj.emboj.7601466 17170709; PubMed Central PMCID: PMC1782361.
82. Douglas LM, Konopka JB. Fungal membrane organization: the eisosome concept. Annu Rev Microbiol. 2014;68:377–93. Epub 2014/06/18. doi: 10.1146/annurev-micro-091313-103507 25002088.
83. Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, et al. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J Cell Biol. 2008;183(6):1075–88. Epub 2008/12/08. doi: 10.1083/jcb.200806035 19064668; PubMed Central PMCID: PMC2600745.
84. Douglas LM, Wang HX, Li L, Konopka JB. Membrane Compartment Occupied by Can1 (MCC) and Eisosome Subdomains of the Fungal Plasma Membrane. Membranes (Basel). 2011;1(4):394–411. doi: 10.3390/membranes1040394 22368779; PubMed Central PMCID: PMC3285718.
85. Ziółkowska NE, Karotki L, Rehman M, Huiskonen JT, Walther TC. Eisosome-driven plasma membrane organization is mediated by BAR domains. Nat Struct Mol Biol. 2011;18(7):854–6. Epub 2011/06/19. doi: 10.1038/nsmb.2080 21685922.
86. Gournas C, Gkionis S, Carquin M, Twyffels L, Tyteca D, André B. Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains. Proc Natl Acad Sci U S A. 2018;115(14):E3145–E54. Epub 2018/03/20. doi: 10.1073/pnas.1719462115 29559531; PubMed Central PMCID: PMC5889650.
87. Douglas LM, Wang HX, Keppler-Ross S, Dean N, Konopka JB. Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. MBio. 2012;3(1). Epub 2011/12/27. doi: 10.1128/mBio.00254-11 22202230; PubMed Central PMCID: PMC3244266.
88. Roelants FM, Leskoske KL, Martinez Marshall MN, Locke MN, Thorner J. The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules. 2017;7(3). Epub 2017/09/05. doi: 10.3390/biom7030066 28872598; PubMed Central PMCID: PMC5618247.
89. Lawrence RE, Zoncu R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol. 2019. Epub 2019/01/02. doi: 10.1038/s41556-018-0244-7 30602725.
90. Lawrence RE, Cho KF, Rappold R, Thrun A, Tofaute M, Kim DJ, et al. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold. Nat Cell Biol. 2018;20(9):1052–63. Epub 2018/07/30. doi: 10.1038/s41556-018-0148-6 30061680; PubMed Central PMCID: PMC6279252.
91. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501. Epub 2008/05/22. doi: 10.1126/science.1157535 18497260; PubMed Central PMCID: PMC2475333.
92. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 2011;334(6056):678–83. doi: 10.1126/science.1207056 22053050; PubMed Central PMCID: PMC3211112.
93. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science. 2015;347(6218):194–8. Epub 2015/01/07. doi: 10.1126/science.1259472 25567907; PubMed Central PMCID: PMC4384888.
94. Primo C, Ferri-Blázquez A, Loewith R, Yenush L. Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation. J Biol Chem. 2017;292(2):563–74. Epub 2016/11/28. doi: 10.1074/jbc.M116.746982 27895122; PubMed Central PMCID: PMC5241732.
95. Schmidt MC, McCartney RR. beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J. 2000;19(18):4936–43. doi: 10.1093/emboj/19.18.4936 10990457; PubMed Central PMCID: PMC314222.
96. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A. 2007;104(7):2193–8. Epub 2007/02/07. doi: 10.1073/pnas.0607084104 17287358; PubMed Central PMCID: PMC1892997.
97. Li X, Gerber SA, Rudner AD, Beausoleil SA, Haas W, Villén J, et al. Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J Proteome Res. 2007;6(3):1190–7. doi: 10.1021/pr060559j 17330950.
98. Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics. 2008;7(7):1389–96. Epub 2008/04/11. doi: 10.1074/mcp.M700468-MCP200 18407956; PubMed Central PMCID: PMC2493382.
99. Holt LJ, Tuch BB, Villén J, Johnson AD, Gygi SP, Morgan DO. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science. 2009;325(5948):1682–6. doi: 10.1126/science.1172867 19779198; PubMed Central PMCID: PMC2813701.
100. Gey U, Czupalla C, Hoflack B, Krause U, Rödel G. Proteomic analysis reveals a novel function of the kinase Sat4p in Saccharomyces cerevisiae mitochondria. PLoS One. 2014;9(8):e103956. Epub 2014/08/12. doi: 10.1371/journal.pone.0103956 25117470; PubMed Central PMCID: PMC4138037.
101. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019. Epub 2019/04/01. doi: 10.1093/nar/gkz239 30931475.
102. Subramanian B, Gao S, Lercher MJ, Hu S, Chen WH. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019. Epub 2019/05/22. doi: 10.1093/nar/gkz357 31114888.
103. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91. Epub 2009/01/16. doi: 10.1093/bioinformatics/btp033 19151095; PubMed Central PMCID: PMC2672624.
104. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015;43(W1):W389–94. Epub 2015/04/16. doi: 10.1093/nar/gkv332 25883141; PubMed Central PMCID: PMC4489285.
105. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. doi: 10.1006/jmbi.1993.1626 8254673.
106. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 15264254.
107. Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000;28(6):1102, 4. doi: 10.2144/00286ir01 10868275.
108. McCartney RR, Garnar-Wortzel L, Chandrashekarappa DG, Schmidt MC. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. Biochim Biophys Acta. 2016;1864(11):1518–28. Epub 2016/08/12. doi: 10.1016/j.bbapap.2016.08.007 27524664; PubMed Central PMCID: PMC5018454.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 3
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Evidence of defined temporal expression patterns that lead a gram-negative cell out of dormancy
- A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions
- Correction: Mck1 kinase is a new player in the DNA damage checkpoint pathway
- The Lid/KDM5 histone demethylase complex activates a critical effector of the oocyte-to-zygote transition