Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle
Autoři:
Xue Li aff001; Sudhir Kumar aff002; Marina McDew-White aff001; Meseret Haile aff002; Ian H. Cheeseman aff001; Scott Emrich aff003; Katie Button-Simons aff003; Francois Nosten aff005; Stefan H. I. Kappe aff002; Michael T. Ferdig aff003; Tim J. C. Anderson aff001; Ashley M. Vaughan aff002
Působiště autorů:
Texas Biomedical Research Institute, San Antonio, Texas, United States of America
aff001; Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
aff002; Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
aff003; Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
aff004; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
aff005; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford Old Road campus, Oxford, United Kingdom
aff006; Department of Global Health, University of Washington, Seattle, Washington, United states of America
aff007
Vyšlo v časopise:
Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008453
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008453
Souhrn
Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.
Klíčová slova:
Blood – Malarial parasites – Mammalian genomics – Natural selection – Parasitic diseases – Parasitic life cycles – Plasmodium – Quantitative trait loci
Zdroje
1. Hopp CS, Chiou K, Ragheb DR, Salman AM, Khan SM, Liu AJ, et al. Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition. Elife. 2015;4:e07789.
2. Parts L, Cubillos F, Warringer J, Jain K, Salinas F, Bumpstead SJ, et al. Revealing the genetic structure of a trait by sequencing a population under selection. Genome research. 2011:gr. 116731.110.
3. Feng L, Jia H, Qin Y, Song Y, Liu Y, Tao S. Rapid identification of major QTLS associated with near-freezing temperature tolerance in Saccharomyces cerevisiae. Frontiers in microbiology. 2018;9:2110. doi: 10.3389/fmicb.2018.02110 30254614
4. Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, et al. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature. 2010;464(7291):1039. doi: 10.1038/nature08923 20393561
5. Burga A, Ben-David E, Vergara TL, Boocock J, Kruglyak L. Fast genetic mapping of complex traits in C. elegans using millions of individuals in bulk. Nature communications. 2019;10(1):2680. doi: 10.1038/s41467-019-10636-9 31213597
6. Chevalier FD, Valentim CL, LoVerde PT, Anderson TJ. Efficient linkage mapping using exome capture and extreme QTL in schistosome parasites. BMC genomics. 2014;15(1):617.
7. Blake DP, Billington KJ, Copestake SL, Oakes RD, Quail MA, Wan K-L, et al. Genetic mapping identifies novel highly protective antigens for an apicomplexan parasite. PLoS pathogens. 2011;7(2):e1001279. doi: 10.1371/journal.ppat.1001279 21347348
8. Rosario V, Walliker D, Hall R, Beale G. Persistence of drug-resistant malaria parasites. The Lancet. 1978;311(8057):185–7.
9. Hunt P, Martinelli A, Modrzynska K, Borges S, Creasey A, Rodrigues L, et al. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites. BMC genomics. 2010;11(1):499.
10. Martinelli A, Cheesman S, Hunt P, Culleton R, Raza A, Mackinnon M, et al. A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. Proceedings of the National Academy of Sciences. 2005;102(3):814–9.
11. Culleton R, Martinelli A, Hunt P, Carter R. Linkage group selection: rapid gene discovery in malaria parasites. Genome research. 2005;15(1):92–7. doi: 10.1101/gr.2866205 15632093
12. Pattaradilokrat S, Culleton RL, Cheesman SJ, Carter R. Gene encoding erythrocyte binding ligand linked to blood stage multiplication rate phenotype in Plasmodium yoelii yoelii. Proceedings of the National Academy of Sciences. 2009:pnas. 0811430106.
13. Abkallo HM, Martinelli A, Inoue M, Ramaprasad A, Xangsayarath P, Gitaka J, et al. Rapid identification of genes controlling virulence and immunity in malaria parasites. PLoS pathogens. 2017;13(7):e1006447. doi: 10.1371/journal.ppat.1006447 28704525
14. Petersen I, Gabryszewski SJ, Johnston GL, Dhingra SK, Ecker A, Lewis RE, et al. Balancing drug resistance and growth rates via compensatory mutations in the P lasmodium falciparum chloroquine resistance transporter. Molecular microbiology. 2015;97(2):381–95. doi: 10.1111/mmi.13035 25898991
15. Straimer J, Gnädig NF, Stokes BH, Ehrenberger M, Crane AA, Fidock DA. Plasmodium falciparum K13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. MBio. 2017;8(2):e00172–17. doi: 10.1128/mBio.00172-17 28400526
16. Nair S, Li X, Arya GA, McDew-White M, Ferrari M, Nosten F, et al. Fitness costs and the rapid spread of kelch13-C580Y substitutions conferring artemisinin resistance. Antimicrobial agents and chemotherapy. 2018;62(9):e00605–18. doi: 10.1128/AAC.00605-18 29914963
17. Walliker D, Hunt P, Babiker H. Fitness of drug-resistant malaria parasites. Acta tropica. 2005;94(3):251–9. doi: 10.1016/j.actatropica.2005.04.005 15845348
18. Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M, Checkley LA, et al. Plasmodium falciparum genetic crosses in a humanized mouse model. Nature methods. 2015;12(7):631. doi: 10.1038/nmeth.3432 26030447
19. Leichty AR, Brisson D. Selective whole genome amplification for re-sequencing target microbial species from complex natural samples. Genetics. 2014:genetics. 114.165498.
20. Guggisberg AM, Sundararaman SA, Lanaspa M, Moraleda C, González R, Mayor A, et al. Whole-genome sequencing to evaluate the resistance landscape following antimalarial treatment failure with fosmidomycin-clindamycin. The Journal of infectious diseases. 2016;214(7):1085–91. doi: 10.1093/infdis/jiw304 27443612
21. Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nature communications. 2016;7:11078. doi: 10.1038/ncomms11078 27002652
22. Oyola SO, Ariani CV, Hamilton WL, Kekre M, Amenga-Etego LN, Ghansah A, et al. Whole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplification. Malaria journal. 2016;15(1):597. doi: 10.1186/s12936-016-1641-7 27998271
23. Cowell AN, Loy DE, Sundararaman SA, Valdivia H, Fisch K, Lescano AG, et al. Selective whole-genome amplification is a robust method that enables scalable whole-genome sequencing of Plasmodium vivax from unprocessed clinical samples. MBio. 2017;8(1):e02257–16. doi: 10.1128/mBio.02257-16 28174312
24. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505(7481):50. doi: 10.1038/nature12876 24352242
25. Anderson TJ, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic F, et al. Population parameters underlying an ongoing soft sweep in southeast Asian malaria parasites. Molecular biology and evolution. 2016;34(1):131–44. doi: 10.1093/molbev/msw228 28025270
26. Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiology spectrum. 2016;4(3).
27. Project MPfC. Genomic epidemiology of artemisinin resistant malaria. elife. 2016;5:e08714. doi: 10.7554/eLife.08714 26943619
28. Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. The Journal of infectious diseases. 2014;211(5):670–9. doi: 10.1093/infdis/jiu491 25180241
29. Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. The Lancet Infectious Diseases. 2017;17(5):491–7. doi: 10.1016/S1473-3099(17)30048-8 28161569
30. Cerqueira GC, Cheeseman IH, Schaffner SF, Nair S, McDew-White M, Phyo AP, et al. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome biology. 2017;18(1):78. doi: 10.1186/s13059-017-1204-4 28454557
31. Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nature genetics. 2015;47(3):226. doi: 10.1038/ng.3189 25599401
32. Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. The Lancet. 2012;379(9830):1960–6.
33. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine. 2014;371(5):411–23. doi: 10.1056/NEJMoa1314981 25075834
34. Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, et al. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome research. 2016;26(9):1288–99. doi: 10.1101/gr.203711.115 27531718
35. Miotto O, Almagro-Garcia J, Manske M, MacInnis B, Campino S, Rockett KA, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nature genetics. 2013;45(6):648. doi: 10.1038/ng.2624 23624527
36. Rosenberg R, Rungsiwongse J. The number of sporozoites produced by individual malaria oocysts. The American journal of tropical medicine and hygiene. 1991;45(5):574–7. doi: 10.4269/ajtmh.1991.45.574 1951866
37. Schneider P, Greischar MA, Birget PL, Repton C, Mideo N, Reece SE. Adaptive plasticity in the gametocyte conversion rate of malaria parasites. PLoS pathogens. 2018;14(11):e1007371. doi: 10.1371/journal.ppat.1007371 30427935
38. Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. Revisiting gametocyte biology in malaria parasites. FEMS Microbiology Reviews. 2019.
39. Peatey CL, Dixon MW, Gardiner DL, Trenholme KR. Temporal evaluation of commitment to sexual development in Plasmodium falciparum. Malaria journal. 2013;12(1):134.
40. Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V. Gametocytogenesis: the puberty of Plasmodium falciparum. Malaria journal. 2004;3(1):24.
41. Charlesworth D, Willis JH. The genetics of inbreeding depression. Nature reviews genetics. 2009;10(11):783. doi: 10.1038/nrg2664 19834483
42. Whitlock MC, Ingvarsson PK, Hatfield T. Local drift load and the heterosis of interconnected populations. Heredity. 2000;84(4):452.
43. Anderson TJ, Haubold B, Williams JT, Estrada-Franco § JG, Richardson L, Mollinedo R, et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Molecular biology and evolution. 2000;17(10):1467–82. doi: 10.1093/oxfordjournals.molbev.a026247 11018154
44. Nkhoma SC, Nair S, Al‐Saai S, Ashley E, McGready R, Phyo AP, et al. Population genetic correlates of declining transmission in a human pathogen. Molecular ecology. 2013;22(2):273–85. doi: 10.1111/mec.12099 23121253
45. Hott A, Casandra D, Sparks KN, Morton LC, Castanares G-G, Rutter A, et al. Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes. Antimicrobial agents and chemotherapy. 2015;59(6):3156–67. doi: 10.1128/AAC.00197-15 25779582
46. Vaughan AM, Mikolajczak SA, Camargo N, Lakshmanan V, Kennedy M, Lindner SE, et al. A transgenic Plasmodium falciparum NF54 strain that expresses GFP–luciferase throughout the parasite life cycle. Molecular and biochemical parasitology. 2012;186(2):143–7. doi: 10.1016/j.molbiopara.2012.10.004 23107927
47. Lynch M. The genetic interpretation of inbreeding depression and outbreeding depression. Evolution. 1991;45(3):622–9. doi: 10.1111/j.1558-5646.1991.tb04333.x 28568822
48. Coyne JA. I SPECIATJON. 2004.
49. Noble LM, Chelo I, Guzella T, Afonso B, Riccardi DD, Ammerman P, et al. Polygenicity and epistasis underlie fitness-proximal traits in the Caenorhabditis elegans multiparental experimental evolution (CeMEE) panel. 2017;207(4):1663–85. doi: 10.1534/genetics.117.300406 29066469
50. Zhu SJ, Hendry JA, Almagro-Garcia J, Pearson RD, Amato R, Miles A, et al. The origins and relatedness structure of mixed infections vary with local prevalence of P. falciparum malaria. bioRxiv. 2018:387266.
51. Nkhoma SC, Trevino SG, Gorena KM, Nair S, Khoswe S, Jett C, et al. Resolving within-host malaria parasite diversity using single-cell sequencing. bioRxiv. 2018:391268.
52. Rijpma SR, van der Velden M, González‐Pons M, Annoura T, van Schaijk BC, van Gemert GJ, et al. Multidrug ATP‐binding cassette transporters are essential for hepatic development of Plasmodium sporozoites. Cellular microbiology. 2016;18(3):369–83. doi: 10.1111/cmi.12517 26332724
53. Raj DK, Mu J, Jiang H, Kabat J, Singh S, Sullivan M, et al. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. Journal of Biological Chemistry. 2009;284(12):7687–96. doi: 10.1074/jbc.M806944200 19117944
54. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Molecular microbiology. 2003;49(4):977–89. doi: 10.1046/j.1365-2958.2003.03627.x 12890022
55. Dahlström S, Veiga MI, Mårtensson A, Björkman A, Gil JP. Polymorphism in PfMRP1 (Plasmodium falciparum multidrug resistance protein 1) amino acid 1466 associated with resistance to sulfadoxine-pyrimethamine treatment. Antimicrobial agents and chemotherapy. 2009;53(6):2553–6. doi: 10.1128/AAC.00091-09 19364873
56. van der Velden M, Rijpma SR, Verweij V, van Gemert G-J, Chevalley-Maurel S, van de Vegte-Bolmer M, et al. Protective Efficacy Induced by Genetically Attenuated Mid-to-Late Liver-Stage Arresting Plasmodium berghei Δmrp2 Parasites. The American journal of tropical medicine and hygiene. 2016;95(2):378–82. doi: 10.4269/ajtmh.16-0226 27296385
57. Ramiro RS, Khan SM, Franke-Fayard B, Janse CJ, Obbard DJ, Reece SE. Hybridization and pre-zygotic reproductive barriers in Plasmodium. Proc R Soc B. 2015;282(1806):20143027. doi: 10.1098/rspb.2014.3027 25854886
58. Vázquez-García I, Salinas F, Li J, Fischer A, Barré B, Hallin J, et al. Clonal heterogeneity influences the fate of new adaptive mutations. Cell reports. 2017;21(3):732–44. doi: 10.1016/j.celrep.2017.09.046 29045840
59. Molina-Cruz A, Garver LS, Alabaster A, Bangiolo L, Haile A, Winikor J, et al. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system. Science. 2013;340(6135):984–7. doi: 10.1126/science.1235264 23661646
60. Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nature biotechnology. 2007;25(8):903. doi: 10.1038/nbt1326 17664939
61. McDew-White M, Li X, Nkhoma SC, Nair S, Cheeseman I, Anderson TJ. Mode and tempo of microsatellite length change in a malaria parasite mutation accumulation experiment. bioRxiv. 2019:560516.
62. Davies L, Gather U. The identification of multiple outliers. Journal of the American Statistical Association. 1993;88(423):782–92.
63. Mansfeld BN, Grumet R. QTLseqr: An R package for bulk segregant analysis with next-generation sequencing. The Plant Genome. 2018.
64. Magwene PM, Willis JH, Kelly JK. The statistics of bulk segregant analysis using next generation sequencing. PLoS computational biology. 2011;7(11):e1002255. doi: 10.1371/journal.pcbi.1002255 22072954
65. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, et al. QTL‐seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal. 2013;74(1):174–83. doi: 10.1111/tpj.12105 23289725
66. Li H. A quick method to calculate QTL confidence interval. Journal of genetics. 2011;90(2):355–60. 21869489
67. Dykhuizen D, Hartl DL. Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics. 1980;96(4):801–17. 7021316
68. Nadaraya EA. On estimating regression. Theory of Probability & Its Applications. 1964;9(1):141–2.
69. Watson GS. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A. 1964:359–72.
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 10
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Akutní intermitentní porfyrie
- Vztah užívání alkoholu a mužské fertility
- Šanci na úspěšný průběh těhotenství snižují nevhodné hladiny progesteronu vznikající při umělém oplodnění
Nejčtenější v tomto čísle
- Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato
- Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression
- TSEN54 missense variant in Standard Schnauzers with leukodystrophy
- Viral quasispecies