The comprehensive role of E-cadherin in maintaining prostatic epithelial integrity during oncogenic transformation and tumor progression
Autoři:
Adam Olson aff001; Vien Le aff001; Joseph Aldahl aff001; Eun-Jeong Yu aff001; Erika Hooker aff001; Yongfeng He aff001; Dong-Hong Lee aff001; Won Kyung Kim aff001; Robert D. Cardiff aff002; Joseph Geradts aff003; Zijie Sun aff001
Působiště autorů:
Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
aff001; Center for Comparative Medicine, University of California at Davis, Davis, California, United States of America
aff002; Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
aff003
Vyšlo v časopise:
The comprehensive role of E-cadherin in maintaining prostatic epithelial integrity during oncogenic transformation and tumor progression. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008451
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008451
Souhrn
E-cadherin complexes with the actin cytoskeleton via cytoplasmic catenins and maintains the functional characteristics and integrity of the epithelia in normal epithelial tissues. Lost expression of E-cadherin disrupts this complex resulting in loss of cell polarity, epithelial denudation and increased epithelial permeability in a variety of tissues. Decreased expression of E-cadherin has also been observed in invasive and metastatic human tumors. In this study, we investigated the effect of E-cadherin loss in prostatic epithelium using newly developed genetically engineered mouse models. Deletion of E-cadherin in prostatic luminal epithelial cells with modified probasin promoter driven Cre (PB-Cre4) induced the development of mouse prostatic intraepithelial neoplasia (PIN). An increase in levels of cytoplasmic and nuclear β-catenin appeared in E-cadherin deleted atypical cells within PIN lesions. Using various experimental approaches, we further demonstrated that the knockdown of E-cadherin expression elevated free cytoplasmic and nuclear β-catenin and enhanced androgen-induced transcription and cell growth. Intriguingly, pathological changes representing prostatic epithelial cell denudation and increased apoptosis accompanied the above PIN lesions. The essential role of E-cadherin in maintaining prostatic epithelial integrity and organization was further demonstrated using organoid culture approaches. To directly assess the role of loss of E-cadherin in prostate tumor progression, we generated a new mouse model with bigenic Cdh1 and Pten deletion in prostate epithelium. Early onset, aggressive tumor phenotypes presented in the compound mice. Strikingly, goblet cell metaplasia was observed, intermixed within prostatic tumor lesions of the compound mice. This study provides multiple lines of novel evidence demonstrating a comprehensive role of E-cadherin in maintaining epithelial integrity during the course of prostate oncogenic transformation, tumor initiation and progression.
Klíčová slova:
Apoptosis – Carcinogenesis – Cell staining – Epithelial cells – Mouse models – Organoids – Prostate cancer – Prostate gland
Zdroje
1. Bondow BJ, Faber ML, Wojta KJ, Walker EM, Battle MA (2012) E-cadherin is required for intestinal morphogenesis in the mouse. Dev Biol 371: 1–12. doi: 10.1016/j.ydbio.2012.06.005 22766025
2. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6: 622–634. doi: 10.1038/nrm1699 16025097
3. Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 91: 8263–8267. doi: 10.1073/pnas.91.17.8263 8058792
4. Gall TM, Frampton AE (2013) Gene of the month: E-cadherin (CDH1). J Clin Pathol 66: 928–932. doi: 10.1136/jclinpath-2013-201768 23940132
5. Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI (2001) The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem 276: 12301–12309. doi: 10.1074/jbc.M010377200 11121423
6. Nakagawa H, Hikiba Y, Hirata Y, Font-Burgada J, Sakamoto K, et al. (2014) Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis. Proc Natl Acad Sci U S A 111: 1090–1095. doi: 10.1073/pnas.1322731111 24395807
7. Post S, Heijink IH, Hesse L, Koo HK, Shaheen F, et al. (2018) Characterization of a lung epithelium specific E-cadherin knock-out model: Implications for obstructive lung pathology. Sci Rep 8: 13275. doi: 10.1038/s41598-018-31500-8 30185803
8. Schneider MR, Dahlhoff M, Horst D, Hirschi B, Trulzsch K, et al. (2010) A key role for E-cadherin in intestinal homeostasis and Paneth cell maturation. PLoS One 5: e14325. doi: 10.1371/journal.pone.0014325 21179475
9. Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R (2002) E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 115: 53–62. doi: 10.1016/s0925-4773(02)00090-4 12049767
10. Toivanen R, Mohan A, Shen MM (2016) Basal Progenitors Contribute to Repair of the Prostate Epithelium Following Induced Luminal Anoikis. Stem Cell Reports 6: 660–667. doi: 10.1016/j.stemcr.2016.03.007 27117783
11. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65: 3756–3788. doi: 10.1007/s00018-008-8281-1 18726070
12. Gayther SA, Gorringe KL, Ramus SJ, Huntsman D, Roviello F, et al. (1998) Identification of germ-line E-cadherin mutations in gastric cancer families of European origin. Cancer Res 58: 4086–4089. 9751616
13. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, et al. (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392: 402–405. doi: 10.1038/32918 9537325
14. Sasaki CY, Lin H, Morin PJ, Longo DL (2000) Truncation of the extracellular region abrogrates cell contact but retains the growth-suppressive activity of E-cadherin. Cancer Res 60: 7057–7065. 11156412
15. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14: 1837–1851. 10921899
16. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, et al. (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275: 1784–1787. doi: 10.1126/science.275.5307.1784 9065401
17. Voeller HJ, Truica CI, Gelmann EP (1998) Beta-catenin mutations in human prostate cancer. Cancer Res 58: 2520–2523. 9635571
18. Chesire DR, Ewing CM, Sauvageot J, Bova GS, Isaacs WB (2000) Detection and analysis of beta-catenin mutations in prostate cancer. Prostate 45: 323–334. doi: 10.1002/1097-0045(20001201)45:4<323::aid-pros7>3.0.co;2-w 11102958
19. Gerstein AV, Almeida TA, Zhao G, Chess E, Shih Ie M, et al. (2002) APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 34: 9–16. 11921277
20. Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, et al. (1991) A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol 115: 517–533. doi: 10.1083/jcb.115.2.517 1918152
21. Ginter PS, D'Alfonso TM (2017) Current Concepts in Diagnosis, Molecular Features, and Management of Lobular Carcinoma In Situ of the Breast With a Discussion of Morphologic Variants. Arch Pathol Lab Med 141: 1668–1678. doi: 10.5858/arpa.2016-0421-RA 28574280
22. McCart Reed AE, Kutasovic JR, Lakhani SR, Simpson PT (2015) Invasive lobular carcinoma of the breast: morphology, biomarkers and 'omics. Breast Cancer Res 17: 12. doi: 10.1186/s13058-015-0519-x 25849106
23. Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, et al. (2013) Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res 73: 2718–2736. doi: 10.1158/0008-5472.CAN-12-4213 23610450
24. Birchmeier W, Hulsken J, Behrens J (1995) Adherens junction proteins in tumour progression. Cancer Surv 24: 129–140. 7553658
25. Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HF, et al. (1992) Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res 52: 5104–5109. 1516067
26. Paul R, Ewing CM, Jarrard DF, Isaacs WB (1997) The cadherin cell-cell adhesion pathway in prostate cancer progression. Br J Urol 79 Suppl 1: 37–43.
27. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, et al. (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55: 5195–5199. 7585573
28. Mitchell S, Abel P, Ware M, Stamp G, Lalani E (2000) Phenotypic and genotypic characterization of commonly used human prostatic cell lines. BJU Int 85: 932–944. doi: 10.1046/j.1464-410x.2000.00606.x 10792179
29. Truica CI, Byers S, Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60: 4709–4713. 10987273
30. Verras M, Sun Z (2005) Beta-catenin is involved in insulin-like growth factor 1-mediated transactivation of the androgen receptor. Mol Endocrinol 19: 391–398. doi: 10.1210/me.2004-0208 15514031
31. Verras M, Sun Z (2006) Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett 237: 22–32. doi: 10.1016/j.canlet.2005.06.004 16023783
32. Yang F, Li X, Sharma M, Sasaki CY, Longo DL, et al. (2002) Linking beta-catenin to androgen signaling pathway. J Biol Chem 277: 11336–11344. doi: 10.1074/jbc.M111962200 11792709
33. Wang X, Dong B, Zhang K, Ji Z, Cheng C, et al. (2018) E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo. PLoS Genet 14: e1007609. doi: 10.1371/journal.pgen.1007609 30118484
34. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361: 955–964. doi: 10.1016/S0140-6736(03)12779-1 12648986
35. Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, et al. (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58: 204–209. 9443392
36. Boelens MC, Nethe M, Klarenbeek S, de Ruiter JR, Schut E, et al. (2016) PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma. Cell Rep 16: 2087–2101. doi: 10.1016/j.celrep.2016.07.059 27524621
37. Specian RD, Oliver MG (1991) Functional biology of intestinal goblet cells. Am J Physiol 260: C183–193. doi: 10.1152/ajpcell.1991.260.2.C183 1996606
38. Jamora C, Fuchs E (2002) Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 4: E101–108. doi: 10.1038/ncb0402-e101 11944044
39. Svensson RU, Haverkamp JM, Thedens DR, Cohen MB, Ratliff TL, et al. (2011) Slow disease progression in a C57BL/6 pten-deficient mouse model of prostate cancer. Am J Pathol 179: 502–512. doi: 10.1016/j.ajpath.2011.03.014 21703427
40. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45: 593–605. doi: 10.1002/dvg.20335 17868096
41. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, et al. (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4: 209–221. 14522255
42. Johnson DT, Hooker E, Luong R, Yu EJ, He Y, et al. (2016) Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS One 11: e0148851. doi: 10.1371/journal.pone.0148851 26862755
43. Kwak MK, Johnson DT, Zhu C, Lee SH, Ye DW, et al. (2013) Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors. PLoS One 8: e53476. doi: 10.1371/journal.pone.0053476 23308230
44. He Y, Hooker E, Yu EJ, Wu H, Cunha GR, et al. (2018) An Indispensable Role of Androgen Receptor in Wnt Responsive Cells During Prostate Development, Maturation, and Regeneration. Stem Cells doi: 10.1002/stem.2806 29451339
45. Lee SH, Johnson DT, Luong R, Yu EJ, Cunha GR, et al. (2015) Wnt/beta-Catenin-Responsive Cells in Prostatic Development and Regeneration. Stem Cells 33: 3356–3367. doi: 10.1002/stem.2096 26220362
46. Zhu C, Luong R, Zhuo M, Johnson DT, McKenney JK, et al. (2011) Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate. J Biol Chem 286: 33478–33488. doi: 10.1074/jbc.M111.269894 21795710
47. Mi J, Hooker E, Balog S, Zeng H, Johnson DT, et al. (2018) Activation of hepatocyte growth factor/MET signaling initiates oncogenic transformation and enhances tumor aggressiveness in the murine prostate. J Biol Chem 293: 20123–20136. doi: 10.1074/jbc.RA118.005395 30401749
48. Aldahl J, Yu EJ, He Y, Hooker E, Wong M, et al. (2019) A pivotal role of androgen signaling in Notch-responsive cells in prostate development, maturation, and regeneration. Differentiation 107: 1–10. doi: 10.1016/j.diff.2019.03.002 30927641
49. Lee DH, Yu EJ, Aldahl J, Yang J, He Y, et al. (2019) Deletion of the p16INK4a tumor suppressor and expression of the androgen receptor induce sarcomatoid carcinomas with signet ring cells in the mouse prostate. PLoS One 14: e0211153. doi: 10.1371/journal.pone.0211153 30677079
50. Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, et al. (2016) Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11: 347–358. doi: 10.1038/nprot.2016.006 26797458
51. Thyssen G, Li TH, Lehmann L, Zhuo M, Sharma M, et al. (2006) LZTS2 is a novel beta-catenin-interacting protein and regulates the nuclear export of beta-catenin. Mol Cell Biol 26: 8857–8867. doi: 10.1128/MCB.01031-06 17000760
52. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72: 8463–8471. 9765382
53. Farson D, Witt R, McGuinness R, Dull T, Kelly M, et al. (2001) A new-generation stable inducible packaging cell line for lentiviral vectors A third-generation lentivirus vector with a conditional packaging system. Hum Gene Ther 12: 981–997. doi: 10.1089/104303401750195935 11387062
54. Lee SH, Johnson D, Luong R, Sun Z (2015) Crosstalking between androgen and PI3K/AKT signaling pathways in prostate cancer cells. J Biol Chem 290: 2759–2768. doi: 10.1074/jbc.M114.607846 25527506
55. Lee SH, Zhu C, Peng Y, Johnson DT, Lehmann L, et al. (2013) Identification of a novel role of ZMIZ2 protein in regulating the activity of the Wnt/beta-catenin signaling pathway. J Biol Chem 288: 35913–35924. doi: 10.1074/jbc.M113.529727 24174533
56. Sharma M, Chuang WW, Sun Z (2002) Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem 277: 30935–30941. doi: 10.1074/jbc.M201919200 12063252
57. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489. doi: 10.1093/nar/11.5.1475 6828386
58. Cleutjens KB, van Eekelen CC, van der Korput HA, Brinkman AO, Trapman J (1996) Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specfic antigen promoter. J Biol Chem 271: 6379–6388. doi: 10.1074/jbc.271.11.6379 8626436
59. Yeung F, Li X, Ellett J, Trapman J, Kao C, et al. (2000) Regions of prostate-specific antigen (PSA) promoter confer androgen-independent expression of PSA in prostate cancer cells. J Biol Chem 275: 40846–40855. doi: 10.1074/jbc.M002755200 11006269
60. Li X, Zhu C, Tu WH, Yang N, Qin H, et al. (2011) ZMIZ1 preferably enhances the transcriptional activity of androgen receptor with short polyglutamine tract. PLoS One 6: e25040. doi: 10.1371/journal.pone.0025040 21949845
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 10
- Management pacientů s MPN a neobvyklou kombinací genových přestaveb – systematický přehled a kazuistiky
- Management péče o pacientku s karcinomem ovaria a neočekávanou mutací CDH1 – kazuistika
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Vliv kvality morfologie spermií na úspěšnost intrauterinní inseminace
- Akutní intermitentní porfyrie
Nejčtenější v tomto čísle
- Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato
- Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression
- TSEN54 missense variant in Standard Schnauzers with leukodystrophy
- Viral quasispecies