Vztah mezi polymorfizmy genů nukleotidové excizní reparace a náchylností ke kožnímu melanomu
Autoři:
A. Hashemzehi 1; M. Ghadyani 2; F. Asadian 3; S. A. Dastgheib 4; S. Kargar 5; H. Neamatzadeh 6,7; E. Akbarian 8; A. Emarati 8
Působiště autorů:
Department of Pharmacology, Faculty of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
1; Department of Advanced Medical Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
2; Department of Medical Laboratory Sciences, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran
3; Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
4; Department of General Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
5; Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
6; Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
7; Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
8
Vyšlo v časopise:
Klin Onkol 2021; 34(5): 350-355
Kategorie:
Přehledy
doi:
https://doi.org/10.48095/ccko2021350
Souhrn
Východiska: Účinky jednonukleotidových polymorfizmů (single nucleotide polymorphisms – SNPs) genů nukleotidové excizní reparace (nucleotide excision repair – NER) na náchylnost ke kožnímu melanomu (cutaneous melanoma – CM) jsou předmětem velkého zájmu. V současné době je v několika epidemiologických studiích hodnoceno, zda polymorfizmy XPC, XPD, XPG a XPF souvisí s CM. Výsledky těchto studií jsou ale kontroverzní nebo nevedou k jednoznačnému závěru. Proto jsme provedli studii s cílem zhodnotit vztah mezi sedmi často zkoumanými polymorfizmy dráhy NER a rizikem CM. Metody: Do studie bylo zařazeno celkem 150 patients s diagnózou CM a 150 zdravých kontrol. Sedm SNPs dráhy NER vč. XPC (Lys939Gln a Ala499Val), XPD (Lys157Gln, Asp272Asn a Arg751Arg), XPG (Asp1104His) a XPF (Arg415Gln) bylo analyzováno stanovením polymorfizmu délky štěpných fragmentů pomocí polymerázové řetězové reakce. Výsledky: Mezi polymorfizmy XPC Lys939Gln, Ala499Val, XPD Asp272Asn, Arg751Arg, Arg751Arg, XPF Arg415Gln a XPG Asp1104His a zvýšeným rizikem CM nebyl zjištěn významný vztah. Závěry: Tato studie odhalila, že polymorfizmy XPC, XPD, XPG a XPF nebyly pro náchylnost k CM rizikovým faktorem. Pro další hodnocení a validaci našich výsledků je třeba více studií s dobrým designem a vyšším počtem subjektů v různých populacích. Přesnější důkazy a další objasnění vlastního mechanizmu CM přinesou v budoucnosti studie, které budou brát v úvahu interakce mezi geny jako takovými a mezi geny a prostředím.
Klíčová slova:
jednonukleotidový polymorfizmus – kožní melanom – nukleotidová excizní reparace – vztah
Zdroje
1. Ghaemmaghami F, Zarchi MK, Gilani MM et al. Uterine sarcoma: clinicopathological characteristics, treatment and outcome in Iran. Asian Pac J Cancer Prev 2008; 9 (3): 421–426.
2. Behtash N, Karimi Zarchi M, Deldar M. Preoperative prognostic factors and effects of adjuvant therapy on outcomes of early stage cervical cancer in Iran. Asian Pac J Cancer Prev 2009; 10 (4): 613–618.
3. Karimi Zarchi M, Akhavan A, Gholami H et al. Evaluation of cervical cancer risk-factors in women referred to Yazd-Iran hospitals from 2002 to 2009. Asian Pac J Cancer Prev 2010; 11 (2): 537–538.
4. Ghaemmaghami F, Zarchi MK, Mousavi A. Surgical management of primary vulvar lymphangioma circumscriptum and postradiation: case series and review of literature. J Minim Invasive Gynecol 2008; 15 (2): 205–208. doi: 10.1016/j.jmig.2007.09.005.
5. Binesh F, Zarchi MK, Vahedian H et al. Primary malignant lymphoma of the uterine cervix. BMJ Case Rep 2012; 2012: bcr2012006675. doi: 10.1136/bcr-2012-006675.
6. Niktabar SM, Latifi SM, Moghimi M et al. Association of vitamin D receptor gene polymorphisms with risk of cutaneous melanoma. A meta-analysis based on 40 case-control studies. Dermatol Rev/Przegl Dermatol 2019; 106: 268–279. doi: 10.5114/dr.2019.86909.
7. Iglesias-Pena N, Paradela S, Tejera-Vaquerizo A et al. Cutaneous melanoma in the elderly: review of a growing problem. Actas Dermosifiliogr 2019; 110 (6): 434–447. doi: 10.1016/j.ad.2018.11.009.
8. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136 (5): E359–386. doi: 10.1002/ijc.29210.
9. Cormier JN, Xing Y, Ding M et al. Ethnic differences among patients with cutaneous melanoma. Arch Intern Med 2006; 166 (17): 1907–1914. doi: 10.1001/archinte.166.17.1907.
10. Melanoma stats, facts, and figures n.d. [online]. Available from: http: //www.optisigma.pt/editor/wp-content/uploads/2016/11/Melanoma-Stats-Facts-and-Figures-AIM-at-Melanoma.pdf.
11. Leonardi GC, Falzone L, Salemi R et al. Cutaneous melanoma: from pathogenesis to therapy (review). Int J Oncol 2018; 52 (4): 1071–1080. doi: 10.3892/ijo.2018.4287.
12. Yu J, Luo X, Huang H et al. Clinical characteristics of malignant melanoma in southwest China: a single-center series of 82 consecutive cases and a meta-analysis of 958 reported cases. PLoS One 2016; 11 (11): e0165591. doi: 10.1371/journal.pone.0165591.
13. Read J, Wadt KAW, Hayward NK. Melanoma genetics. J Med Genet 2016; 53 (1): 1–14. doi: 10.1136/jmedgenet- 2015-103150.
14. Leibeling D, Laspe P, Emmert S. Nucleotide excision repair and cancer. J Mol Histol 2006; 37 (5–7): 225–238. doi: 10.1007/s10735-006-9041-x.
15. Paszkowska-Szczur K, Scott RJ, Serrano-Fernandez P et al. Xeroderma pigmentosum genes and melanoma risk. Int J Cancer 2013; 133 (5): 1094–1100. doi: 10.1002/ijc.28123.
16. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009; 461 (7267): 1071–1078. doi: 10.1038/nature08467.
17. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutag 2017; 58 (5): 235–263. doi: 10.1002/em.22087.
18. Petruseva IO, Evdokimov AN, Lavrik OI. Molecular mechanism of global genome nucleotide excision repair. Acta Naturae 2014; 6 (1): 23–34. doi: 10.32607/20758251-2014-6-1-23-34.
19. Han C, Huang X, Hua R et al. The association between XPG polymorphisms and cancer susceptibility: evidence from observational studies. Medicine 2017; 96 (32): e7467. doi: 10.1097/MD.0000000000007467.
20. Ge J, Liu H, Qian D et al. Genetic variants of genes in the NER pathway associated with risk of breast cancer: a large-scale analysis of 14 published GWAS datasets in the DRIVE study. Int J Cancer 2019; 145 (5): 1270–1279. doi: 10.1002/ijc.32371.
21. Blankenburg S, König IR, Moessner R et al. Assessment of 3 xeroderma pigmentosum group C gene polymorphisms and risk of cutaneous melanoma: a case–control study. Carcinogenesis 2005; 26 (6): 1085–1090. doi: 10.1093/carcin/bgi055.
22. Wu K-G, He X-F, Li Y-H et al. Association between the XPD/ERCC2 Lys751Gln polymorphism and risk of cancer: evidence from 224 case-control studies. Tumour Biol 2014; 35 (11): 11243–11259. doi: 10.1007/s13277-014-2379-x.
23. Li C, Hu Z, Liu Z et al. Polymorphisms in the DNA repair genes XPC, XPD, and XPG and risk of cutaneous melanoma: a case-control analysis. Cancer Epidemiol Biomarkers Prev 2006; 15 (12): 2526–2532. doi. 10.1158/1055-9965.EPI-06-0672.
24. ElMahgoub IR, Gouda HM, Samra MA et al. Polymorphisms of xeroderma pigmentosum genes (XPC, XPD, and XPG) and susceptibility to acute leukemia among a sample of Egyptian patients. J Hematopathol 2017; 10 (6): 3–7. doi: 10.1007/s12308-017-0290-2.
25. López-Cima MF, González-Arriaga P, García-Castro L et al. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain. BMC Cancer 2007; 7: 162. doi: 10.1186/1471-2407-7-162.
26. Yang ZH, Liang WB, Jia J et al. The xeroderma pigmentosum group C gene polymorphisms and genetic susceptibility of nasopharyngeal carcinoma. Acta Oncol 2008; 47 (3): 379–384. doi: 10.1080/02841860701558815.
27. Yousaf S, Khan MI, Micheal S et al. XRCC1 and XPD DNA repair gene polymorphisms: a potential risk factor for glaucoma in the Pakistani population. Mol Vis 2011; 17: 1153–1163.
28. Zhou C, Xie L-P, Lin Y-W et al. Susceptibility of XPD and hOGG1 genetic variants to prostate cancer. Biomed Rep 2013; 1 (4): 679–683. doi: 10.3892/br.2013.123.
29. Zhu S, Wang A, Xia Z. Polymorphisms of DNA repair gene XPD and DNA damage of workers exposed to vinylchloride monomer. Int J Hyg Environ Health 2005; 208 (5): 383–390. doi: 10.1016/j.ijheh.2005.05.002.
30. Povey JE, Darakhshan F, Robertson K et al. DNA repair gene polymorphisms and genetic predisposition to cutaneous melanoma. Carcinogenesis 2007; 28 (5): 1087–1093. doi: 10.1093/carcin/bgl257.
31. Torres SM, Luo L, Lilyquist J et al. DNA repair variants, indoor tanning, and risk of melanoma. Pigment Cell Melanoma Res 2013; 26 (5): 677–684. doi: 10.1111/pcmr.12 117.
32. Jiang W, Zhang H, Chen QW et al. A meta-analysis of XPC Lys939Gln polymorphism and melanoma susceptibility. J Eur Acad Dermatol Venereol 2016; 30 (8): 1327–1331. doi: 10.1111/jdv.13477.
33. Hua RX, Zhu ZJ, Shen GP et al. Polymorphisms in the XPC gene and gastric cancer susceptibility in a Southern Chinese population. OncoTargets Ther 2016; 9: 5513–5519. doi: 10.2147/OTT.S113055.
34. Zhou L, Lu Y, Yang G et al. Quantitative assessment of the association between XPC Lys939Gln polymorphism and cutaneous melanoma risk. Tumor Biol 2014; 35 (2): 1427–1432. doi: 10.1007/s13277-013-1196-y.
35. Zhao F, Shang Y, Zeng C et al. Association of single nucleotide polymorphisms of DNA repair genes in NER pathway and susceptibility to pancreatic cancer. Int J Clin Exp Pathol 2015; 8 (9): 11579–11586.
36. Winsey SL, Haldar NA, Marsh HP et al. A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res 2000; 60 (20): 5612–5616.
37. Dębniak T, Scott RJ, Huzarski T et al. XPD common variants and their association with melanoma and breast cancer risk. Breast Cancer Res Treat 2006; 98 (2): 209–215. doi: 10.1007/s10549-005-9151-2.
38. Sun Y, Zhang H, Ying H et al. A meta-analysis of XPD/ERCC2 Lys751Gln polymorphism and melanoma susceptibility. Int J Clin Exp Med 2015; 8 (8): 13874–13878.
39. Liu J, Song J, Wang M-Y et al. Association of EGF rs4444903 and XPD rs13181 polymorphisms with cutaneous melanoma in Caucasians. Med Chem 2015; 11 (6): 551–559. doi: 10.2174/1573406410666141224115516.
40. Zhu H-L, Bao J-M, Lin P-X et al. XPD Lys751Gln and Asp312Asn polymorphisms and susceptibility to skin cancer: a meta-analysis of 17 case-control studies. Asian Pac J Cancer Prev 2014; 15 (16): 6619–6625. doi: 10.7314/apjcp.2014.15.16.6619.
41. Xu Y, Jiao G, Wei L et al. Current evidences on the XPG Asp1104His polymorphism and melanoma susceptibility: a meta-analysis based on case-control studies. Mol Genet Genomics 2015; 290 (1): 273–279. doi: 10.1007/s00438-014-0917-2.
42. Manandhar M, Boulware KS, Wood RD. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene 2015; 569 (2): 153–161. doi: 10.1016/j.gene.2015.06.026.
43. Emmert S. The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res 2001; 29 (7): 1443–1452. doi: 10.1093/nar/29.7.1443.
44. Li C, Hu Z, Liu Z et al. Polymorphisms in the DNA repair genes XPC, XPD, and XPG and risk of cutaneous melanoma: a case-control analysis. Cancer Epidemiol Biomarkers Prev 2006; 15 (12): 2526–2532. doi: 10.1158/1055-9965.EPI-06-0672.
45. He X-F, Liu L-R, Wei W et al. Association between the XPG Asp1104His and XPF Arg415Gln polymorphisms and risk of cancer: a meta-analysis. PLoS One 2014; 9 (5): e88490. doi: 10.1371/journal.pone.0088490.
46. Wang M, Li Q, Gu C et al. Polymorphisms in nucleotide excision repair genes and risk of primary prostate cancer in Chinese Han populations. Oncotarget 2017; 8 (15): 24362–24371. doi: 10.18632/oncotarget.13848.
47. Schärer OD. ERCC1/XPF endonuclease-positioned to cut. EMBO J 2017; 36 (14): 1993–1995. doi: 10.15252/embj.201797489.
48. Oliveira C, Rinck-Junior JA, Lourenço GJ et al. Assessment of the XPC (A2920C), XPF (T30028C), TP53 (Arg72Pro) and GSTP1 (Ile105Val) polymorphisms in the risk of cutaneous melanoma. J Cancer Res Clin Oncol 2013; 139 (7): 1199–1206. doi: 10.1007/s00432-013-1430-4.
49. Gomez GVB, de Oliveira C, Rinck-Junior JA et al. XPC (A2920C), XPF (T30028C), TP53 (Arg72Pro), and GSTP1 (Ile105Val) polymorphisms in prognosis of cutaneous melanoma. Tumour Biol 2016; 37 (3): 3163–3171. doi: 10.1007/s13277-015-4123-6.
Štítky
Dětská onkologie Chirurgie všeobecná OnkologieČlánek vyšel v časopise
Klinická onkologie
2021 Číslo 5
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Prof. Petra Tesařová: Pacientky s metastatickým karcinomem nemají čas čekat na výsledky zdlouhavých byrokratických procedur
- Cinitaprid – nové bezpečné prokinetikum s odlišným mechanismem účinku
- Cinitaprid v léčbě funkční dyspepsie – přehled a metaanalýza aktuálních dat
Nejčtenější v tomto čísle
- Osobnosti a ich prínos pre rozvoj radiačnej onkológie
- Skupina léků anti-HER2 pro pacientky s karcinomu prsu se rozrostla o preparát Phesgo
- Pokroky v terapii myelodysplastického syndromu
- Místo a důležitost kyseliny hyaluronové při nežádoucích účincích radioterapie