Evaluation of tuberculosis diagnostic tools, with extending MODS assay use to second line susceptibility testing
Autoři:
S. Amer; A. El Hefnawy; A. Baz; H. Okasha
Působiště autorů:
Department of Medical Microbiology and Immunology, Faculty of Medicine University of Alexandria, Egypt
Vyšlo v časopise:
Epidemiol. Mikrobiol. Imunol. 70, 2021, č. 3, s. 161-167
Kategorie:
Původní práce
Souhrn
Tuberculosis diagnosis and drug susceptibility testing (DST) are considered a priority for prompt initiation of effective therapy, increasing the chance of cure, decreasing the development of resistance, and reducing transmission.
Aim: Our objective was to evaluate currently applied diagnostic tools for tuberculosis including microscopic examination, GeneXpert, culture, and microscopic observation drug susceptibility (MODS) assay, investigating MODS assay usage for second line DST against culture based methods.
Material and Methods: In this study the 120 sputum samples collected from suspected cases were over one year duration from December 2018 to January 2020. The samples were subjected to ZN microscopic examination, GeneXpert, MODS assay, and culture for detection of mycobacteria. Moreover, resistance to 5 drugs: isoniazid, rifampicin, ofloxacin, levofloxacin, and amikacin were tested using MODS against the proportion method.
Results: The sensitivity and specificity of the MODS assay were similar culture method with the advantage of obtaining the results in a median time of 10.7 days. Whereas the specificity of ZN and GeneXpert was high among untreated cases and decreased in subjects with a history of treatment. Monoresistance was the most common form of resistance detected among new cases followed by multidrug resistance, with a categorical agreement between the two methods above 90% for all tested drugs.
Conclusions: MODS assay is an attractive option once standardized for second line susceptibility testing and GeneXpert assay is of high sensitivity for rapid detection of MTB and RIF resistance especially in treatment naive cases.
Zdroje
1. World Health Organization. Global Tuberculosis Report 2020; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2020 Available at: www last accessed 2021/02/08.
2. Huang Z, Li G, Chen J, et al. Evaluation of MODS assay for rapid detection of Mycobacterium tuberculosis resistance to second-line drugs in a tertiary care tuberculosis hospital in China. Tuberc Edinb Scotl, 2014;94(5):506–510.
3. WHO. Noncommercial culture and drug-susceptibility testing methods for screening patients at risk for multidrug-resistant tuberculosis: Policy Statement. Geneva: World Health Organization; 2011. Available at: www:<https://who.int/tb/publications/ 2011/mdr_tb_diagnostics_9789241501620/en/> last accessed 2021/02/08.
4. Trollip AP, Moore D, Coronel J, et al. Second-line drug susceptibility breakpoints for Mycobacterium tuberculosis using MODS assay. Int J Tuberc Lung Dis, 2014;18(2):227–232.
5. Caviedes L, Lee TS, Gilman RH, et al. Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. The Tuberculosis Working Group in Peru. J Clin Microbiol, 2000;38(3):1203–1208.
6. Barnard M, Gey van Pittius NC, van Helden PD, et al. The diagnostic performance of the GenoType MTBDRplus version 2 line probe assay is equivalent to that of the Xpert MTB/RIF assay. J Clin Microbiol, 2012;50(11):3712–3716.
7. Jianjun J, Jin Y, Yining S, et al. Head-to-head comparison of the diagnostic accuracy of Xpert MTB/RIF and Xpert MTB/RIF Ultra for tuberculosis: a meta-analysis. Infec Dis, 2020; 52(11):763–775.
8. Kubica GP, Dye WE, Cohn ML, et al. Sputum digestion and decontamination with N-acetyl-L-cysteine-sodium hydroxide for culture of mycobacteria. Am Rev Respir Dis, 1963; 87:775–779.
9. Kassaza K, Orikiriza P, Llosa A, et al. Lowenstein-Jensen selective medium for reducing contamination in Mycobacterium tuberculosis culture. J Clin Microbiol, 2014;52(7):2671–2673.
10. Moore DA, Evans CA, Gilman RH, et al. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med, 2006;355(15):1539–1550.
11. Arora D, Dhanashree B. Utility of smear microscopy and GeneXpert for the detection of Mycobacterium tuberculosis in clinical samples. Germs., 2020;10(2):81–87.
12. Canetti G, Fox W, Khomenko A, et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ, 1969;41(1):21–43.
13. WHO. Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB. World Health organization. Geneva, Switzerland, 2018. Available at: www last accessed 2021/02/08.
14. Singh S, Kumar P, Sharma S, et al. Rapid Identification and Drug Susceptibility Testing of Mycobacterium tuberculosis: Standard Operating Procedure for Non-Commercial Assays: Part 1: Microscopic Observation Drug Susceptibility Assay v2.4.12. J Lab Physicians, 2012; 4(2):101–111.
15. Coronel J, Roper M, Mitchell S, et al. MODS accreditation process for regional reference laboratories in Peru: validation by GenoType ® MTBDRplus. Int J Tuberc Lung Dis., 2010; 14(11):1475– 1480.
16. Rasool G, Khan AM, Mohy-Ud-Din R, et al. Detection of Mycobacterium tuberculosis in AFB smear-negative sputum specimens through MTB culture and GeneXpert® MTB/RIF assay. Int J Immunopathol Pharmacol, 2019:33, 2058738419827174.
17. CLSI. Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters. 4th ed. CLSI guideline M23. Wayne, PA: Clinical laboratory standard institute 2016.
18. Fitzwater SP, Sechler GA, Jave O, et al. Second-line anti-tuberculosis drug concentrations for susceptibility testing in the MODS assay. Eur Respir J, 2013;41(5):1163–1171.
19. Ndubuisi NO, Azuonye OR, Victor NO, et al. Diagnostic Accuracy of Xpert MTB/RIF Assay in Diagnosis of Pulmonary Tuberculosis. J Infect Dis Treat, 2016;2:1.
20. Thapa A, Gurung P, Ghimire G. Evaluation of Gene Xpert Mtb/Rif Assay for the Detection of Mycobacterium Tuberculosis in Sputum of Patients Suspected of Pulmonary Tuberculosis Visiting National Tuberculosis Centre, Thimi, Bhaktapur, Nepal. SAARC J Tuberc Lung Dis HIVAIDS, 2016;13(1):16–22.
21. Boyles TH, Hughes J, Cox V, et al. False-positive Xpert® MTB/RIF assays in previously treated patients: need for caution in interpreting results. Int J Tuberc Lung Dis, 2014;18(7): 876–878.
22. Van Kampen SC, Susanto NH, Simon S, et al. Effects of Introducing Xpert MTB/RIF on Diagnosis and Treatment of Drug-Resistant Tuberculosis Patients in Indonesia: A Pre-Post Intervention Study. PLoS ONE, 2015;10(6): e0123536.
23. Meawed, TE, Shaker, A. Assessment of diagnostic accuracy of Gene Xpert MTB/RIF in diagnosis of suspected retreatment pulmonary tuberculosis patients. Egypt J Chest Dis Tuberc, 2016;65:637–641.
24. Theron G, Venter R, Calligaro G, et al. Xpert MTB/RIF Results in Patients With Previous Tuberculosis: Can We Distinguish True From False Positive Results? Clin Infect Dis, 2016; 62(8):995– 1001.
25. Swai HF, Mugusi FM, Mbwambo JK. Sputum smear negative pulmonary tuberculosis: sensitivity and specificity of diagnostic algorithm. BMC Res Notes, 2011;4:475.
26. Catanzaro DG, Trollip AP, Seifert M, et al. Evaluation of the microscopic observation drug susceptibility assay for the detection of first- and second-line drug susceptibility for Mycobacterium tuberculosis. Eur Respir J, 2017;49(4):1602215.
27. Huang Z, Qin C, Du J, et al. Evaluation of the microscopic observation drug susceptibility assay for the rapid detection of MDR-TB and XDR-TB in China: a prospective multicentre study. J Antimicrob Chemother, 2015;70(2):456–462.
28. Shah NS, Moodley P, Babaria P, et al. Rapid diagnosis of tuberculosis and multidrug resistance by the microscopic-observation drug-susceptibility assay. Am J Respir Crit Care Med, 2011;183(10):1427–1433.
29. Agarwal A, Katoch CDS, Kumar M, et al. Evaluation of Microscopic observation drug susceptibility (MODS) assay as a rapid, sensitive and inexpensive test for detection of tuberculosis and multidrug resistant tuberculosis. Med J Armed Forces India, 2019;75(1):58–64.
30. Eufrásio R, Alcobia M, Correia L. Pulmonary tuberculosis: Resistance pattern to first line anti-tuberculosis drugs in the Coimbra District, 2000–2011. Revista Portuguesa de Pneumología, 2017;23(5):300–302.
31. Sobhy K, Elawady S, Abdel Latef S, et al Patterns of drug resistance in cases of smear positive pulmonary tuberculosis in Giza and Cairo governorates. Egypt J Chest Dis Tuberc, 2012;61(4):343–348.
32. World Health Organization. Country profile: Egypt. Tuberculosis Profile. Geneva, Switzerland: WHO, 2019. Available at: www last accessed 2021/02/08.
33. Catanzaro A, Rodwell TC, Catanzaro DG, et al. Performance Comparison of Three Rapid Tests for the Diagnosis of Drug-Resistant Tuberculosis. PLOS ONE, 2015;10(8): e0136861.
34. Jabeen, K, Shakoor, S, Hasan, R. Fluoroquinolone-resistant tuberculosis: implications in settings with weak healthcare systems. Int J Infect Dis, 2015;32:118–123.
35. Zignol M, Dean AS, Alikhanova N, et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis, 2019;16(10):1185–1192.
36. WHO. WHO treatment guidelines for multidrug- and rifampicin- resistant tuberculosis, 2018 update. Available at: www< http://who.int/tb/areas-of-work/drug-resistant-tb/guideline- update2018/en/> last accessed 2021/02/08.
37. Applicability of the World Health Organization recommended new shorter regimen in a multidrug-resistant tuberculosis high burden country. European Respiratory Society. Available at: www last accessed 2021/02/08.
38. Kontsevaya I, Werngren J, Holicka Y, et al. Non-commercial phenotypic assays for the detection of Mycobacterium tuberculosis drug resistance: a systematic review. Eur J Clin Microbiol. Infect Dis Off Publ Eur Soc Clin Microbiol, 2020;39(3):415–426.
Štítky
Hygiena a epidemiologie Infekční lékařství MikrobiologieČlánek vyšel v časopise
Epidemiologie, mikrobiologie, imunologie
2021 Číslo 3
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
Nejčtenější v tomto čísle
- Epidemiologie, rizikové faktory a možnosti prevence akutních leukemií
- Co víme a stále nevíme o klíšťové encefalitidě?
- Pokud by byla k dispozici vakcína proti covid-19, chtěli byste být očkováni? A jste očkováni proti chřipce a jiným nemocem? Průzkum mezi studenty vysokých škol v době nouzového stavu
- Autozápalový proces v patogenéze generalizovanej pustulárnej psoriázy a perspektívy jej cielenej liečby
Zvyšte si kvalifikaci online z pohodlí domova
Kardiologické projevy hypereozinofilií
nový kurzVšechny kurzy