Rozdíly ve fosforylaci Akt v CD4+ lymfocytech u patogenní a nepatogenní infekce SIV
Autoři:
S. T. Stephenson 1; V. Bostik 2; P. Bostik 1,2
Působiště autorů:
Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 303
1; Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
2
Vyšlo v časopise:
Epidemiol. Mikrobiol. Imunol. 65, 2016, č. 2, s. 136-144
Kategorie:
Původní práce
Souhrn
HIV infekce u lidí a SIV infekce u makaků Rhesus (RM) se vyznačuje zvýšenou apoptózou a aktivací vyvolanou buněčnou smrtí (AICD) CD4 lymfocytů. Avšak některé druhy primátů, jako například afričtí mangabejové (SM), jsou přirozeně infikováni SIV a nerozvine se u nich symptomatické onemocnění. Tato studie ukazuje, že lymfocyty RM infikovaných SIV vykazují sníženou vnitrobuněčnou expresi GSK3beta a současně zvýšenou expresi a fosforylaci (Thr308) kinázy Akt spojenou se stimulací receptorů CD3 a CD28. Tyto rozdíly jsou specificky měřitelné pouze v některých definovaných subpopulacích CD4 lymfocytů. Je to jeden z mála příkladů monofosforylace Akt a tato signalizace může představovat jeden z mechanismů vedoucích k rozdílům v AICD a případně i rezistenci k infekci SIV.
KLÍČOVÁ SLOVA:
T lymfocyty – AIDS – primate – Akt – vnitrobuněčná signalizace
Zdroje
1. Gruters RA, Terpstra FG, De Goede RE, Mulder JW, de Wolf F, Schellekens PT, et al. Immunological and virological markers in individuals progressing from seroconversion to AIDS. AIDS, 1991;5:837–844.
2. McClure HM, Anderson DC, Fultz PN, Ansari AA, Lockwood E, Brodie A. Spectrum of disease in macaque monkeys chronically infected with SIV/SMM. Vet Immunol Immunopathol, 1989;21(1):13–24.
3. Oyaizu N, McCloskey TW, Coronesi M, Chirmule N, Kalyanaraman VS, Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood, 1993;82(11):3392–3400. PubMed PMID: 7902137.
4. Ansari AA, Onlamoon N, Bostik P, Mayne AE, Gargano L, Pattanapanyasat K. Lessons learnt from studies of the immune characterization of naturally SIV infected sooty mangabeys. Front Biosci, 2003;8:s1030–1050. PubMed PMID: 12957849.
5. Bostik P, Dodd GL, Ansari AA. CD4+ T cell signaling in the natural SIV host –implications for disease pathogenesis. Front Biosci, 2003;8:s904–912. PubMed PMID: 12957876.
6. Bostik P, Noble ES, Stephenson ST, Villinger F, Ansari AA. CD4+ T cells from simian immunodeficiency virus disease-resistant sooty mangabeys produce more IL-2 than cells from disease-susceptible species: involvement of p300 and CREB at the proximal IL-2 promoter in IL-2 up-regulation. J Immunol, 2007;178(12):7720–7729. PubMed PMID: 17548609.
7. Neudorf SM, Jones MM, McCarthy BM, Harmony JA, Choi EM. The CD4 molecule transmits biochemical information important in the regulation of T lymphocyte activity. Cell Immunol, 1990;125:301–314.
8. Corado J, Mazerolles F, Le Deist F, Barbat C, Kaczorek M, Fischer A. Inhibition of CD4+ T cell activation and adhesion by peptides derived from the gp160. J Immunol, 1991;147:475–482.
9. Jabado N, Le Deist F, Fisher A, Hivroz C. Interaction of HIV gp120 and anti-CD4 antibodies with the CD4 molecule on human CD4+ T cells inhibits the binding activity of NF-AT, NF-kappa B and AP-1, three nuclear factors regulating interleukin-2 gene enhancer activity. EurJ Immunol, 1994;24:2646–2652.
10. Bostik P, Brice GT, Greenberg KP, Mayne AE, Villinger F, Lewis MG, et al. Inverse correlation of telomerase activity/proliferation of CD4+ T lymphocytes and disease progression in simian immunodeficiency virus-infected nonhuman primates. J Acquir Immune Defic Syndr, 2000;24(2):89–99.
11. Bostik P, Dodd GL, Villinger F, Mayne AE, Ansari AA. Dysregulation of the polo-like kinase pathway in CD4+ T cells is characteristic of pathogenic simian immunodeficiency virus infection. J Virol, 2004;78(3):1464–1472. PubMed PMID: 14722302.
12. Bostik P, Mayne AE, Villinger F, Greenberg KP, Powell JD, Ansari AA. Relative Resistance in the Development of T Cell Anergy in CD4(+) T Cells from Simian Immunodeficiency Virus Disease-Resistant Sooty Mangabeys. J Immunol, 2001;166(1):506–516.
13. Cantrell D. Protein kinase B (Akt) regulation and function in T lymphocytes. Semin Immunol, 2002;14(1):19–26. PubMed PMID: 11884227.
14. Kelly E, Won A, Refaeli Y, Van Parijs L. IL-2 and related cytokines can promote T cell survival by activating AKT. J Immunol, 2002;168(2):597–603. PubMed PMID: 11777951.
15. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci, 2004;29(2):95–102. PubMed PMID: 15102436.
16. Ohteki T, Parsons M, Zakarian A, Jones RG, Nguyen LT, Woodgett JR, et al. Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3. J Exp Med, 2000;192(1):99–104. PubMed PMID: 10880530. Pubmed Central PMCID: 1887707.
17. Appleman LJ, van Puijenbroek AA, Shu KM, Nadler LM, Boussiotis VA. CD28 costimulation mediates down-regulation of p27kip1 and cell cycle progression by activation of the PI3K/PKB signaling pathway in primary human T cells. J Immunol, 2002;168(6):2729–36. PubMed PMID: 11884439.
18. Diehn M, Alizadeh AA, Rando OJ, Liu CL, Stankunas K, Botstein D, et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci USA, 2002;99(18):11796–11801. PubMed PMID: 12195013.
19. Panka DJ, Mano T, Suhara T, Walsh K, Mier JW. Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem, 2001;276(10):6893–6896.
20. Ansari AA, Mayne AE, Onlamoon N, Pattanapanyasat K, Mori K, Villinger F. Use of recombinant cytokines for optimized induction of antiviral immunity against SIV in the nonhuman primate model of human AIDS. Immunol Res, 2004;29(1–3):1–18. PubMed PMID: 15181266.
21. Stephenson ST, Bostik P, Song B, Rajan D, Bhimani S, Rehulka P, et al. Distinct host cell proteins incorporated by SIV replicating in CD4+ T cells from natural disease resistant versus non-natural disease susceptible hosts. Retrovirology, 2010;7:107. PubMed PMID: 21162735. Pubmed Central PMCID: 3012658.
22. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J, 1996;15(23):6541–6551. PubMed PMID: 8978681. Pubmed Central PMCID: 452479.
23. Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease. Cell Signal, 2011;23(10):1515–1527. PubMed PMID: 21620960.
24. Ruegg CL, Engleman EG. Impaired immunity in AIDS. The mechanisms responsible and their potential reversal by antiviral therapy. Ann NY Acad Sci, 1990;616:307–317.
25. Soudeyns H, Rebai N, Pantaleo GP, Ciurli C, Boghossian T, Sekaly RP, et al. The T cell receptor V beta repertoire in HIV-1 infection and disease. Semin Immunol, 1993;5(3):175–185. PubMed PMID: 8102262.
26. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C, et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. NatMed, 1995;1:129–134.
27. Lau KF, Miller CC, Anderton BH, Shaw PC. Molecular cloning and characterization of the human glycogen synthase kinase-3beta promoter. Genomics, 1999;60(2):121–128. PubMed PMID: 10486203.
28. Tachado SD, Li X, Swan K, Patel N, Koziel H. Constitutive activation of phosphatidylinositol 3-kinase signaling pathway down-regulates TLR4-mediated tumor necrosis factor-alpha release in alveolar macrophages from asymptomatic HIV-positive persons in vitro. J Biol Chem, 2008;283(48):33191–33198. PubMed PMID: 18826950. Pubmed Central PMCID: 2586243.
29. Remy I, Michnick SW. Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol Cell Biol, 2004;24(4):1493–1504. PubMed PMID: 14749367.
30. Choi SH, Lyu SY, Park WB. Mistletoe lectin induces apoptosis and telomerase inhibition in human A253 cancer cells through dephosphorylation of Akt. Arch Pharm Res, 2004;27(1):68–76. PubMed PMID: 14969342.
31. Luiten RM, Pene J, Yssel H, Spits H. Ectopic hTERT expression extends the life span of human CD4+ helper and regulatory T-cell clones and confers resistance to oxidative stress-induced apoptosis. Blood, 2003;101(11):4512–4519. PubMed PMID: 12586632.
32. Birkenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J Immunol, 2003;171(4):1623–1629. PubMed PMID: 12902457.
33. Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol, 2002;168(10):5024–5031. PubMed PMID: 11994454.
34. Van Parijs L, Refaeli Y, Lord JD, Nelson BH, Abbas AK, Baltimore D. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity, 1999;11(3):281–288. PubMed PMID: 10514006.
35. Davis LS, Lipsky PE. Tolerance induction of human CD4+ T cells: markedly enhanced sensitivity of memory versus naive T cells to peripheral anergy. Cell Immunol, 1993;146(2):351–361.
36. Maier CC, Greene MI. Biochemical features of anergic T cells. Immunol Res, 1998;17(1–2):133–140.
37. Schaefer TM, Bell I, Fallert BA, Reinhart TA. The T-cell receptor zeta chain contains two homologous domains with which simian immunodeficiency virus Nef interacts and mediates down-modulation. J Virol, 2000;74(7):3273–3283. PubMed PMID: 10708444.
38. Howe AY, Jung JU, Desrosiers RC. Zeta chain of the T-cell receptor interacts with nef of simian immunodeficiency virus and human immunodeficiency virus type 2. JVirol, 1998;72:9827–9834.
39. Renkema GH, Saksela K. Interactions of HIV-1 NEF with cellular signal transducing proteins. Front Biosci, 2000;5:D268–283. PubMed PMID: 10704155.
40. Cicchetti P, Mayer BJ, Thiel G, Baltimore D. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science, 1992;257(5071):803–806. PubMed PMID: 1379745.
41. Ren R, Mayer BJ, Cicchetti P, Baltimore D. Identification of a ten-amino acid proline-rich SH3 binding site. Science, 1993;259(5098):1157–1161. PubMed PMID: 8438166.
42. Kane LP, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev, 2003;192:7–20. PubMed PMID: 12670391.
43. Wolf D, Witte V, Laffert B, Blume K, Stromer E, Trapp S, et al. HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med, 2001;7(11):1217–1224. PubMed PMID: 11689886.
44. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005;307(5712):1098–1101. PubMed PMID: 15718470.
45. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell, 2006;11(6):859–871. PubMed PMID: 17141160.
46. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell, 2006;127(1):125–137. PubMed PMID: 16962653.
Štítky
Hygiena a epidemiologie Infekční lékařství MikrobiologieČlánek vyšel v časopise
Epidemiologie, mikrobiologie, imunologie
2016 Číslo 2
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Popis familiární formy Creutzfeldt-Jakobovy nemoci
- Nové přístupy v kontrole vzestupu počtu onemocnění pertusí
-
Výskyt klíštěte obecného Ixodes ricinus a významných patogenů jím přenášených ve vybraných oblastech se zvýšeným počtem onemocnění klíšťovou encefalitidou v různých nadmořských výškách v České republice
Část I. Klíště obecné Ixodes ricinus a virus klíšťové encefalitidy - Vliv kyslíku na produkci endotoxinu u bakterií ze skupiny Bacteroides fragilis group izolovaných od pacientů s kolorektálním karcinomem