Meranie kardiovaskulárnych parametrov u novorodencov – význam a aktuálne poznatky
Autoři:
M. Kozár 1,2
; K. Javorka 1; K. Maťašová 2; H. Kolarovszká 2; M. Zibolen 2
Působiště autorů:
Dept. of Physiology, Jessenius Medical Faculty Martin, Comenius University Bratislava, Martin, Slovakia
Head prof. MUDr. A. Čalkovská, PhD.
1; Clinic of Neonatology, Jessenius Medical Faculty and University Hospital in Martin, Comenius University in Bratislava, Martin, Slovakia
Head prof. MUDr. M. Zibolen, CSc.
2
Vyšlo v časopise:
Čes-slov Pediat 2016; 71 (4): 229-235.
Kategorie:
Přehledový článek
Souhrn
Popôrodná adaptácia je zložitý proces, ovplyvňujúci predovšetkým kardiovaskulárny a respiračný systém bezprostredne po pôrode. Tento proces zahŕňa nástup spontánneho a pravidelného dýchania a tiež fyziologické a anatomické zmeny kardiovaskulárneho systému.
Technologický pokrok poskytuje nové možnosti efektívnejšieho a zároveň neinvazívneho monitorovania vitálnych funkcií. Frekvencia akcie srdca je najužitočnejším parametrom, ktorý odráža okamžitý priebeh popôrodnej adaptácie a spolu so saturáciou krvi kyslíkom patrí k štandardnému monitorovaniu procesu adaptácie. Nové technológie, ako variabilita frekvencie akcie srdca a infračervená spektroskopia, boli pomerne nedávno implementované do neonatologického klinického výskumu aj praxe.
Lepšie porozumenie fyziológii a patofyziológii mechanizmov popôrodnej adaptácie môže byť nápomocné v prispôsobení preventívnych a terapeutických postupov, a tým minimalizovaní ich nepriaznivých vplyvov, predovšetkým u extrémne nezrelých novorodencov. V predkladanom článku sú prezentované najnovšie údaje o monitorovaní hemodynamických a kardiovaskulárnych parametrov v priebehu včasného i neskoršieho popôrodného obdobia.
Key words:
popôrodná adaptácia, frekvencia akcie srdca, variabilita frekvencie akcie srdca, krvný tlak, saturácia krvi kyslíkom, tkanivováoxygenácia
Zdroje
1. van Vonderen JJ, Roest AA, Siew ML, et al. Measuring physiological changes during the transition to life after birth. Neonatology 2014; 105 (3): 230–242.
2. van Vonderen JJ, Hooper SB, Kroese JK, et al. Pulse oximetry measures a lower heart rate at birth compared with electrocardiography. J Pediatr 2015; 166 (1): 49–53.
3. Wyllie J, Bruinenberg J, Roehr CC, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. Resuscitation 2015; 95: 249–263.
4. Phillipos E, Solevåg AL, Pichler G, et al. Heart rate assessment immediately after birth. Neonatology 2016; 109 (2): 130–138.
5. Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg 1953; 32 (4): 260–267.
6. Bhatt S, Alison BJ, Wallace EM, et al. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol 2013; 591 (8): 2113–2126.
7. Meier-Stauss P, Bucher HU, Hürlimann R, et al. Pulse oximetry used for documenting oxygen saturation and right-to-left shunting immediately after birth. Eur J Pediatr 1990; 149 (12): 851–855.
8. Toth B, Becker A, Seelbach-Gobel B. Oxygen saturation in healthy newborn infants immediately after birth measured by pulse oximetry. Arch Gynecol Obstet 2002; 266 (2): 105–107.
9. Dawson JA, Kamlin CO, Wong C, et al. Changes in heart rate in the first minutes after birth. Arch Dis Child Fetal Neonatal Ed 2010; 95 (3): 177–181.
10. van Vonderen JJ, Roest AA, Siew ML, et al. Noninvasive measurements of hemodynamic transition directly after birth. Pediatr Res 2014; 75 (3): 448–452.
11. Kozar M, et al. Unpublished data.
12. Pichler G, Baik N, Urlesberger B, et al. Cord clamping time in spontaneously breathing preterm neonates in the first minutes after birth: impact on cerebral oxygenation – a prospective observational study. J Matern Fetal Neonatal Med 2016; 29 (10): 1570–1572.
13. Smit M, Dawson JA, Ganzeboom A, et al. Pulse oximetry in newborns with delayed cord clamping and immediate skin-to-skin contact. Arch Dis Child Fetal Neonatal Ed 2014; 99 (4): F309–314.
14. Makarov L, Komoliatova V, Zevald S, et al. QT dynamicity, microvolt T-wave alternans, and heart rate variability during 24-hour ambulatory electrocardiogram monitoring in the healthy newborn of first to fourth day of life. J Electrocardiol 2010; 43 (1): 8–14.
15. Cresi F, Pelle E, Calabrese R, et al. Perfusion index variations in clinically and hemodynamically stable preterm newborns in the first week of life. Ital J Pediatr 2010; 36: 6.
16. Selig FA, Tonolli ER, Silva EV, et al. Heart rate variability in preterm and term neonates. Arq Bras Cardiol 2011; 96 (6): 443–449.
17. Kume M, Matsuzaki H, Mizote M. Measurement of heart rate variability in early neonates just after birth. Neural Engineering 2003. Conference Proceedings. First International IEEE EMBS Conference 2003: 265–267.
18. Javorka K, Javorka M, Tonhajzerova I, et al. Determinants of heart rate in newborns. Acta Medica Martiniana 2011; 11 (2): 7–16.
19. Mehta SK, Super DM, Connuck D, et al. Heart rate variability in healthy newborn infants. Am J Cardiol 2002; 89 (1): 50–53.
20. Massaro AN, Govindan RB, Al-Shargabi T, et al. Heart rate variability in encephalopathic newborns during and after therapeutic hypothermia. J Perinatol 2014; 34 (11): 836–841.
21. van Ravenswaaij-Arts CM, Hopman JC, Kollée LA, et al. The influence of respiratory distress syndrome on heart rate variability in very preterm infants. Early Hum Dev 1991; 27 (3): 207–221.
22. Griffin MP, O’Shea TM, Bissonette EA, et al. Abnormal heart rate characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr Res 2003; 53 (6): 920–926.
23. Fairchild KD, Aschner JL. HeRO monitoring to reduce mortality in NICU patients. Res Reports Neonatol 2012; 2: 65–76.
24. Moorman JR, Carlo WA, Kattwinkel J, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr 2011; 159 (6): 900–906.
25. May LE, Scholtz SA, Suminski R, et al. Aerobic exercise during pregnancy influences infant heart rate variability at one month of age. Early Hum Dev 2014; 90 (1): 33–38.
26. Rakow A, Katz-Salamon M, Ericson M, et al. Decreased heart rate variability in children born with low birth weight. Pediatr Res 2013; 74 (3): 339–343.
27. Spassov L, Curzi-Dascalova L, Clairambault J, et al. Heart rate and heart rate variability during sleep in small-for- gestational age newborns. Pediatr Res 1994; 35: 500–505.
28. Lehotska Z, Javorka K, Javorka M, et al. Heart rate variability in small-for-age newborns during first days of life. Acta Medica Martiniana 2007; 7: 10–16.
29. Takci S, Yigit S, Korkmaz A, et al. Comparison between oscillometric and invasive blood pressure measurements in critically ill premature infants. Acta Paediatr 2012; 101 (2): 132–135.
30. Peňáz J. Photoelectric measurement of blood pressure, volume and flow in the finger. In: Digest of the 10th International Conference on Medical and Biological Engineering, Dresden, Germany 1973; 2: 104.
31. Lemson J, Hofhuizen CM, Schraa O, et al. The reliability of continuous noninvasive finger blood pressure measurement in critically ill children. Anesth Analg 2009; 108 (3): 814–821.
32. Yiallourou SR, Walker AM, Horne RS. Validation of a new noninvasive method to measure blood pressure and assess baroreflex sensitivity in preterm infants during sleep. Sleep 2006; 29 (8): 1083–1088.
33. Salihoğlu O, Can E, Beşkardeş A, et al. Delivery room blood pressure percentiles of healthy, singleton, liveborn neonates. Pediatr Int 2012; 54 (2): 182–189.
34. Pichler G, Cheung PY, Binder C, et al. Time course study of blood pressure in term and preterm infants immediately after birth. PLoS One 2014; 9 (12): e114504.
35. van Vonderen JJ, Roest AA, Siew ML, et al. Noninvasive measurements of hemodynamic transition directly after birth. Pediatr Res 2014; 75 (3): 448–452.
36. Binder C, Urlesberger B, Schwaberger B, et al. Borderline hypo-tension: how does it influence cerebral regional tissue oxygenation in preterm infants? J Matern Fetal Neonatal Med 2015; 18: 1–6.
37. LeFlore JL, Engle WD. Clinical factors influencing blood pressure in the neonate. NeoReviews 2002; 3 (8): 145–150.
38. Javorka K. Klinická fyziológia pre pediatrov. Martin: Osveta, 1996: 1–487. ISBN 80-2170-512-4.
39. Cunningham S, Symon AG, Elton RA, et al. Intra-arterial blood pressure reference ranges, death and morbidity in very low birthweight infants during the first seven days of life. Early Hum Dev 1999; 56 (2–3): 151–165.
40. Kent AL, Meskell S, Falk MC, et al. Normative blood pressure data in non-ventilated premature neonates from 28-36 weeks gestation. Pediatr Nephrol 2009; 24 (1): 141–146.
41. Pejovic B, Peco-Antic A, Martinkovic-Eric J. Blood pressure in non-critically ill preterm and full-term neonates. Pediatr Nephrol 2007; 22 (2): 249–257.
42. Dawson JA, Kamlin CO, Vento M, et al. Defining the reference range for oxygen saturation for infants after birth. Pediatrics 2010; 125 (6): e1340–1347.
43. Rabi Y, Yee W, Chen SY, et al. Oxygen saturation trends immediately after birth. J Pediatr 2006; 148 (5): 590–594.
44. Lamberská T, Vaňková J, Plavka R. Efficacy of FiO2 increase during the initial resuscitation of premature infants <29 weeks: an observational study. Pediatr Neonatol 2013; 54 (6): 373–379.
45. Mariani G, Dik PB, Ezquer A, et al. Pre-ductal and post-ductal O2 saturation in healthy term neonates after birth. J Pediatr 2007; 150 (4): 418–421.
46. Rüegger C, Bucher HU, Mieth RA. Pulse oximetry in the newborn: is the left hand pre- or post-ductal? BMC Pediatr 2010; 10: 35.
47. Valero J, Desantes D, Perales-Puchalt A, et al. Effect of delayed umbilical cord clamping on blood gas analysis. Eur J Obstet Gynecol Reprod Biol 2012; 162 (1): 21–23.
48. Maťašová K, Bukovinská Z, Jánoš M, et al. Pulse oximetry as a screening method for early detection of critical congenital heart disease in newborns in the region of Northern Slovakia. Čes-slov Pediat 2011; 66 (3): 146–152.
49. Jegatheesan P, Song D, Angell C, et al. Oxygen saturation nomogram in newborns screened for critical congenital heart disease. Pediatrics 2013; 131 (6): 1803–1810.
50. Manja V, Lakshminrusimha S, Cook DJ. Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr 2015; 169 (4): 332–340.
51. Lakshminrusimha S, Manja V, Mathew B, et al. Oxygen targeting in preterm infants: a physiological interpretation. J Perinatol 2015; 35 (1): 8–15.
52. Pichler G, Cheung PY, Aziz K, et al. How to monitor the brain during immediate neonatal transition and resuscitation? A systematic qualitative review of the literature. Neonatology 2014; 105 (3): 205–210.
53. Almaazmi M, Schmid MB, Havers S, et al. Cerebral near-infrared spectroscopy during transition of healthy term newborns. Neonatology 2013; 103 (4): 246–251.
54. Hessel TW, Hyttel-Sorensen S, Greisen G. Cerebral oxygenation after birth – a comparison of INVOS(®) and FORE-SIGHT™ near-infrared spectroscopy oximeters. Acta Paediatr 2014; 103 (5): 488–493.
55. Maťašová K. Splanchnická cirkulácia novorodencov – fyziológia a vybrané patologické stavy. Bratislava: SAMEDI, 2013: 1–216. ISBN 978-80--9970825-3-6.
56. Urlesberger B, Grossauer K, Pocivalnik M, et al. Regional oxygen saturation of the brain and peripheral tissue during birth transition of term infants. J Pediatr 2010; 157 (5): 740–744.
57. Montaldo P, De Leonibus C, Giordano L, et al. Cerebral, renal and mesenteric regional oxygen saturation of term infants during transition. J Pediatr Surg 2015; 50 (8): 1273–1277.
58. Urlesberger B, Kratky E, Rehak T, et al. Regional oxygen saturation of the brain during birth transition of term infants: comparison between elective cesarean and vaginal deliveries. J Pediatr 2011; 159 (3): 404–408.
59. Urlesberger B, Brandner A, Pocivalnik M, et al. A left to-right shunt via the ductus arteriosus is associated with increased regional cerebral oxygen saturation during neonatal transition. Neonatology 2013; 103 (4): 259–263.
60. Pichler G, Binder C, Avian A, et al. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J Pediatr 2013; 163 (6): 1558–1563.
61. Binder C, Urlesberger B, Avian A, et al. Cerebral and peripheral regional oxygen saturation during postnatal transition in preterm neonates. J Pediatr 2013; 163 (2): 394–399.
62. Bernal NP, Hoffman GM, Ghanayem NS, et al. Cerebral and somatic near-infrared spectroscopy in normal newborns. J Pediatr Surg 2010; 45 (6): 1306–1310.
63. Pellicer A, Greisen G, Benders M, et al. The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants. Neonatology 2013; 104 (3): 171–178.
64. Sorensen LC, Greisen G. The brains of very preterm newborns in clinically stable condition may be hyperoxygenated. Pediatrics 2009; 124 (5): 958–963.
65. Alderliesten T, Lemmers PM, van Haastert IC, et al. Hypotension in preterm neonates: low blood pressure alone does not affect neurodevelopmental outcome. J Pediatr 2014; 164 (5): 986–991.
66. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med 2015; 20 (3): 164–172.
67. Cortez J, Gupta M, Amaram A, et al. Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates. J Matern Fetal Neonatal Med 2011; 24 (4): 574–582.
Štítky
Neonatologie Pediatrie Praktické lékařství pro děti a dorostČlánek vyšel v časopise
Česko-slovenská pediatrie
2016 Číslo 4
- Horní limit denní dávky vitaminu D: Jaké množství je ještě bezpečné?
- Isoprinosin je bezpečný a účinný v léčbě pacientů s akutní respirační virovou infekcí
- Aktuality v léčbě syndromu dráždivého tračníku
Nejčtenější v tomto čísle
- Bolest na hrudi
- Hemoptýza
- Jak hodnotit vysoce senzitivní troponin T u novorozenců?
- Současný pohled na vrozené syndromy selhání kostní dřeně (vyžádaný článek)
Zvyšte si kvalifikaci online z pohodlí domova
Kardiologické projevy hypereozinofilií
nový kurzVšechny kurzy