Sérové protilátky proti laminarinu u kolorektálního karcinomu: prospektivní pilotní studie
Autoři:
D. Kohoutová 1,2
; Drahošová M. 3; Morávková P. 1; Podhola M. 4; S. Rejchrt 1
; Bureš J. 1
Působiště autorů:
2nd Department of Internal Medicine – Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
1; The Royal Marsden NHS Foundation Trust, London, United Kingdom
2; Institute of Clinical Immunology and Allergology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
3; The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
4
Vyšlo v časopise:
Gastroent Hepatol 2021; 75(4): 323-327
Kategorie:
Clinical and experimental gastroenterology: original article
doi:
https://doi.org/10.48095/ccgh2021323
Souhrn
Úvod a cíle: Laminarin je nízkomolekulární (504 Da) větvený glukózový polysacharid [ (1®3) -b-D-glukan], který je schopen modulovat humorální a buněčnou imunitní odpověď, a to nespecifickou i specifickou. Laminarin se vyznačuje anti-tumorózní aktivitou, neboť indukuje apoptózu a ovlivňuje intestinální mikrobiota. Cílem studie bylo vyšetřit anti-laminarinové protilátky u pacientů s kolorektálním karcinomem. Metody: Do prospektivní studie bylo zahrnuto 46 jedinců, z toho 14 kontrol (5 mužů, 9 žen, věk 29–80, průměr 55 ± 13) a 32 pacientů s kolorektálním karcinomem (14 mužů, 18 žen, věk 46–86, průměr 66 ± 11). Dva pacienti z CRC skupiny byli vyřazeni pro zjištěnou odlehlou hodnotu. Z 30 pacientů s CRC mělo 12 pravostranný kolorektální karcinom (12/30, 40 %). Většina pacientů s CRC měla stadium III (13/30, 43 %) nebo IV (13/30, 43 %). Pacienti měli převážně středně diferencovaný (15/30, 50 %) nebo nízce diferencovaný (11/30, 37 %) karcinom. Vzorky byly odebírány z periferní žilní krve a sérové IgG protilátky proti laminarinu byly stanoveny metodou ELISA v jednotkách U/ml. Výsledky: Sérové protilátky proti laminarinu byly signifikantně vyšší u kontrol ve srovnání s pacienty s CRC (16,23 ± 6,60; 11,41 ± 5,53; p = 0,015) a u kontrol ve srovnání s pacienty s levostranným CRC (11,38 ± 5,39; p = 0,046). Významný rozdíl byl pozorován mezi kontrolami a CRC III. stadiem (11,01 ± 3,36; p = 0,017); mezi kontrolami a CRC IV. stadiem (10,98 ± 6,06; p = 0,049). Anti-laminarinové protilátky byly signifikantně nižší u středně diferencovaného CRC ve srovnání s kontrolami (10,78 ± 5,22; p = 0,020), avšak nikoli u nízce diferencovaného CRC (12,10 ± 6,28; p = 0,755). Nebyl prokázán rozdíl mezi kontrolami a ženami s CRC (11,94 ± 6,39; p = 0,092). Byl potvrzen signifikantní rozdíl mezi kontrolami a muži s CRC (10,72 ± 4,32; p = 0,017). Závěr: Sérové protilátky proti laminarinu byly signifikantně nižší u pacientů s CRC a u podskupin osob s kolorektálním karcinomem.
Klíčová slova:
kolorektální karcinom – anti-laminarinové protilátky – nádorová biologie
Zdroje
1. Becker S, Tebben J, Coffinet S et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci U S A 2020; 117 (12): 6599–6607. doi: 10.1073/pnas.1917001 117.
2. Smith AJ, Graves B, Child R et al. Immunoregulatory activity of the natural product laminarin varies widely as a result of its physical properties. J Immunol 2018; 200 (2): 788–799. doi: 10.4049/jimmunol.1701258.
3. Zargarzadeh M, Amaral AJR, Custódio CA et al. Biomedical applications of laminarin. Carbohydr Polym 2020; 232: 115774. doi: 10.1016/j.carbpol.2019.115774.
4. Ji YB, Ji CF, Zhang H. Laminarin induces apoptosis of human colon cancer LOVO cells through a mitochondrial pathway. Molecules 2012; 17 (8): 9947–9960. doi: 10.3390/molecules17089947.
5. Song K, Xu L, Zhang W et al. Laminarin promotes anti-cancer immunity by the maturation of dendritic cells. Oncotarget 2017; 8 (24): 38554– –38567. doi: 10.18632/oncotarget.16170.
6. Vigors S, O‘Doherty JV, Rattigan R et al. Effect of a laminarin rich macroalgal extract on the caecal and colonic microbiota in the post-weaned pig. Mar Drugs 2020; 18 (3): 157. doi: 10.3390/md18030157.
7. Rattigan R, Sweeney T, Maher S et al. Laminarin-rich extract improves growth performance, small intestinal morphology, gene expression of nutrient transporters and the large intestinal microbial composition of piglets during the critical post-weaning period. Br J Nutr 2020; 123 (3): 255–263. doi: 10.1017/S0007114519002678.
8. Nguyen SG, Kim J, Guevarra RB et al. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet. Food Funct 2016; 7 (10): 4193–4201. doi: 10.1039/c6fo00929h.
9. Cui Y, Zhu L, Li Y et al. Structure of a laminarin-type b- (1®3) -glucan from brown algae Sargassum henslowianum and its potential on regulating gut microbiota. Carbohydr Polym 2021; 255: 117389. doi: 10.1016/j.carbpol.2020.117389.
10. Tang C, Kamiya T, Liu Y et al. Inhibition of dectin-1 signaling ameliorates colitis by inducing lactobacillus-mediated regulatory T-cell expansion in the intestine. Cell Host Microbe 2015; 18 (2): 183–197. doi: 10.1016/j.chom.2015. 07.003.
11. Rattigan R, Sweeney T, Vigors S et al. Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs. J Anim Physiol Anim Nutr (Berlin) 2020; 104 (5): 1471–1483. doi: 10.1111/jpn.13428.
12. Rejchrt S, Drahosová M, Kopácová M et al. Antilaminaribioside and antichitobioside antibodies in inflammatory bowel disease. Folia Microbiol (Praha) 2008; 53 (4): 373–376. doi: 10.1007/s12223-008-0058-2.
13. Kohoutova D, Drahosova M, Moravkova P et al. Anti-outer membrane protein C and anti-glycoprotein 2 antibodies in inflammatory bowel disease and their association with complicated forms of Crohn‘s disease. BMC Gastroenterol 2014; 14: 190. doi: 10.1186/s12876-014-0190-1.
14. Kohoutova D, Pejchal J, Bures J. Mitotic and apoptotic activity in colorectal neoplasia. BMC Gastroenterol 2018; 18 (1): 65. doi: 10.1186/s12876-018-0786-y.
15. Kohoutova D, Smajs D, Moravkova P et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis 2014; 14: 733. doi: 10.1186/s12879-014-0733-7.
16. Kohoutova D, Forstlova M, Moravkova P et al. Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia. BMC Cancer 2020; 20 (1): 39. doi: 10.1186/s12885-020-6512-5.
17. Macrae FA. Colorectal cancer: epidemiology, risk factors, and protective factors. [online]. Available from URL: www.uptodate.com.
18. Kohoutova D, Rejchrt S, Cihak M et al. Importance of correct colorectal cancer screening timing in the average-risk Czech population. Abdomin Oncol 2013; 1: 1–4.
19. Zavoral M, Suchanek S, Majek O et al. Colorectal cancer screening: 20 years of development and recent progress. World J Gastroenterol 2014; 20 (14): 3825–3834. doi: 10.3748/wjg.v20.i14.3825.
20. Moy B, Jacobson BC. Surveillance after colorectal cancer resection. [online]. Available from URL: www.uptodate.com.
21. Chiani P, Bromuro C, Cassone A et al. Anti-beta-glucan antibodies in healthy human subjects. Vaccine 2009; 27 (4): 513–519. doi: 10.1016/j.vaccine.2008.11.030.
22. Dotan I. New serologic markers for inflammatory bowel disease diagnosis. Dig Dis 2010; 28 (3): 418–423. doi: 10.1159/000320396.
23. Malickova K, Lakatos PL, Bortlik M et al. Anticarbohydrate antibodies as markers of inflammatory bowel disease in a Central European cohort. Eur J Gastroenterol Hepatol 2010; 22 (2): 144–150. doi: 10.1097/MEG.0b013e32832f5c7e.
24. Kuna AT. Serological markers of inflammatory bowel disease. Biochem Med (Zagreb) 2013; 23 (1): 28–42. doi: 10.11613/bm.2013.006.
25. Rieder F, Schleder S, Wolf A et al. Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn‘s disease behavior. Inflamm Bowel Dis 2010; 16 (2): 263–274. doi: 10.1002/ibd.21 046.
26. Seow CH, Stempak JM, Xu W et al. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am J Gastroenterol 2009; 104 (6): 1426–1434. doi: 10.1038/ajg.2009.79.
27. Ji CF, Ji YB. Laminarin-induced apoptosis in human colon cancer LoVo cells. Oncol Lett 2014; 7 (5): 1728–1732. doi: 10.3892/ol.2014.1952.
28. Park HK, Kim IH, Kim J et al. Induction of apoptosis and the regulation of ErbB signaling by laminarin in HT-29 human colon cancer cells. Int J Mol Med 2013; 32 (2): 291–295. doi: 10.3892/ijmm.2013.1409.
29. Jolles B, Remington M, Andrews PS. Effects of sulphated degraded laminarin on experimental tumour growth. Br J Cancer 1963; 17 (1): 109– –115. doi: 10.1038/bjc.1963.16.
30. Hoffman R, Paper DH, Donaldson J et al. Inhibition of angiogenesis and murine tumour growth by laminarin sulphate. Br J Cancer 1996; 73 (10): 1183–1186. doi: 10.1038/bjc.1996.228.
31. Kohoutova D et al. Intestinal microbiota in inflammatory bowel disease and colorectal neoplasia (in Czech). Hradec Králové: Nucleus HK 2013. ISBN 978-8087009-97-0.
Štítky
Dětská gastroenterologie Gastroenterologie a hepatologie Chirurgie všeobecnáČlánek vyšel v časopise
Gastroenterologie a hepatologie
2021 Číslo 4
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Horní limit denní dávky vitaminu D: Jaké množství je ještě bezpečné?
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Neodolpasse je bezpečný přípravek v krátkodobé léčbě bolesti
Nejčtenější v tomto čísle
- Heydeho syndróm
- Infekce SARS-CoV-2 a postižení slinivky břišní
- Vliv CDED diety na rozvoj remise u pacienta s přetrvávající aktivitou Crohnovy choroby – kazuistické sdělení a zkušenosti pracoviště
- Vitamín D a nealkoholová steatóza pečene u detí