#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Trofoblastové kmeňové bunky, invázia trofoblastu a organoidy – pokroky v gynekológii


Autoři: Petra Gašparová 1 ;  Zuzana Ballová 1 ;  D. Bačenková 2 ;  M. Trebuňová 2 ;  Erik Dosedla 1
Působiště autorů: Department of Gynaecology and Obstetrics, Faculty of Medicine, University P. J. Safarik in Košice, Hospital AGEL Košice-Šaca Inc., Slovak Republic 1;  Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Slovak Republic 2
Vyšlo v časopise: Ceska Gynekol 2024; 89(2): 151-155
Kategorie: Přehledová práce
doi: https://doi.org/10.48095/cccg2024151

Souhrn

Súhrn: Ľudská placenta predstavuje životne dôležitú bariéru medzi matkou a vyvíjajúcim sa plodom počas tehotenstva. Porucha včasného vývoja placenty je spojená so závažnými poruchami tehotenstva. Napriek jej komplexnému vývoju stále nie sú úplne objasnené rôzne molekulárne procesy riadiace vývoj placenty a špecializáciu buniek trofoblastu. Jednou z hlavných prekážok je nedostatok vhodných bunkových modelových systémov. Tradičné dvojrozmerné (2D) bunkové kultúry nedokážu imitovať podmienky in vivo a nezachytávajú zložité medzibunkové interakcie nevyhnutné na štúdium vývoja placenty. Avšak trojrozmerné (3D) modely organoidov, odvodené z kmeňových buniek, ktoré replikujú prirodzenú organizáciu a architektúru buniek výrazne zlepšili naše chápanie správania sa trofoblastov a ich medicínskych aplikácií. Organoidy s relevantnými fenotypmi poskytujú cennú platformu na modelovanie fyziológie a patológie placenty, vrátane modelovania porúch placenty. Sú veľkým prísľubom pre personalizovanú medicínu, zlepšenie diagnostiky a hodnotenia účinnosti a bezpečnosti farmaceutických liečiv. Tento článok poskytuje stručný prehľad trofoblastových kmeňových buniek, invázie trofoblastu a rozvíjajúcej sa úlohy organoidov v gynekológii.

Klíčová slova:

organoidy – trofoblastové kmeňové bunky – invázia trofoblastu – komplikácie tehotenstva


Zdroje

1. Bačenková D, Trebuňová M, Čížková D et al. In vitro model of human trophoblast in early placentation. Biomedicines 2022; 10 (4): 904. doi: 10.3390/biomedicines10040904.

2. Knöfler M, Haider S, Saleh L et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Review Cell Mol Life Sci 2019; 76 (18): 3479–3496. doi: 10.1007/s00018-019-03104-6.

3. Augustyniak J, Bertero A, Coccini T et al. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019; 39 (12): 1610–1622. doi: 10.1002/jat.3815.

4. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013; 85 (1): 3–10. doi: 10.1159/000345615.

5. Zhao Z, Chen X, Dowbaj AM et al. Organoids. Nat Rev Methods Primers 2022; 2: 94. doi: 10.1038/s43586-022-00174-y.

6. Douglas GC, VandeVoort CA, Kumar P et al. Trophoblast stem cells: models for investigating trophectoderm differentiation and placental development. Endocr Rev 2009; 30 (3): 228–240. doi: 10.1210/er.2009-0001.

7. Lawless L, Qin Y, Xie L et al. Trophoblast differentiation: mechanisms and implications for pregnancy complications. Nutrients 2023; 15 (16): 3564. doi: 10.3390/nu15163564.

8. Dong C, Beltcheva M, Gontarz P et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife 2020; 9: e52504. doi: 10.7554/eLife.52504.

9. Liu X, Ouyang JF, Rossello FJ et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature 2020; 586 (7827): 101–107. doi: 10.1038/s41586-020-2734-6.

10. Karvas RM, Khan SA, Verma S et al. Stem-cell--derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell 2022; 29 (5): 810.e8–825.e8. doi: 10.1016/j.stem.2022.04.004.

11. Sheridan MA, Fernando RC, Gardner L et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc 2020; 15 (10): 3441–3463. doi: 10.1038/s41596-020-0381-x.

12. Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131: 66–77. doi: 10.1016/j.semcdb.2022.03.039.

13. Zhuang BM, Cao DD, Liu XF et al. Application of a JEG-3 organoid model to study HLA-G function in the trophoblast. Front Immunol 2023; 14: 1130308. doi: 10.3389/fimmu.2023.1130308.

14. Io S, Kondoh E, Chigusa Y et al. New era of trophoblast research: integrating morphological and molecular approaches. Hum Reprod Update 2020; 26 (5): 611–633. doi: 10.1093/humupd/ dmaa020.

15. Okae H, Toh H, Sato T et al. Derivation of human trophoblast stem cells. Cell Stem Cell 2018; 22 (1): 50.e6–63.e6. doi: 10.1016/j.stem.2017.11.004.

16. Zhu JY, Pang ZJ, Yu YH. Regulation of trophoblast invasion: the role of matrix metalloproteinases. Rev Obstet Gynecol 2012; 5 (3–4): e137–e143.

17. Knöfler M, Pollheimer J. IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta 2012; 33 Suppl (2): S55–S62. doi: 10.1016/j.placenta.2011.09.019.

18. Heidari-Khoei H, Esfandiari F, Hajari MA et al. Organoid technology in female reproductive biomedicine. Reprod Biol Endocrinol 2020; 18 (1): 64. doi: 10.1186/s12958-020-00621-z.

19. Morey R, Bui T, Fisch KM et al. Modeling placental development and disease using human pluripotent stem cells. Placenta 2023; 141: 18–25. doi: 10.1016/j.placenta.2022.10.011.

20. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet 2018; 19 (11): 671–687. doi: 10.1038/s41576- 018-0051-9.

21. Corrò C, Novellasdemunt L, Li VS. A brief history of organoids. Am J Physiol Cell Physiol 2020; 319 (1): C151–C165. doi: 10.1152/ajpcell.001 20.2020.

22. Han Y, Yang L, Lacko LA et al. Human organoid models to study SARS-CoV-2 infection. Nat Methods 2022; 19 (4): 418–428. doi: 10.1038/s41592-022-01453-y.

23. Wei Y, Zhang C, Fan G et al. Organoids as novel models for embryo implantation study. Reprod Sci 2021; 28 (6): 1637–1643. doi: 10.1007/s43032-021-00501-w.

24. Almeqdadi M, Mana MD, Roper J et al. Gut organoids: mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol 2019; 317 (3): C405–C419. doi: 10.1152/ajpcell.00300.2017.

25. Nikonorova VG, Chrishtop VV, Mironov VA et al. Advantages and potential benefits of using organoids in nanotoxicology. Cells 2023; 12 (4): 610. doi: 10.3390/cells12040610.

26. Wechsler ME, Shevchuk M, Peppas NA. Developing a multidisciplinary approach for engineering stem cell organoids. Ann Biomed Eng 2020; 48 (7): 1895–1904. doi: 10.1007/s104 39-019-02391-1.

27. Lehmann R, Lee CM, Shugart EC et al. Human organoids: a new dimension in cell biology. Mol Biol Cell 2019; 30 (10): 1129–1137. doi: 10.1091/mbc.E19-03-0135.

28. de Jongh D, Massey EK, Bunnik EM. VANGUARD consortium. Organoids: a systematic review of ethical issues. Stem Cell Res Ther 2022; 13 (1): 337. doi: 10.1186/s13287-022-02950-9.

29. Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2021; 28 (1): 35–51. doi: 10.1038/s414 18-020-0565-5.

30. Turco MY, Gardner L, Kay RG et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 2018; 564 (7735): 263–267. doi: 10.1038/s41586-018-0753-3.

31. Heremans R, Jan Z, Timmerman D et al. Organoids of the female reproductive tract: innovative tools to study desired to unwelcome processes. Front Cell Dev Biol 2021; 9: 661472. doi: 10.3389/fcell.2021.661472.

32. Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing disease modeling: the emergence of organoids in cellular systems. Cells 2023; 12 (6): 930. doi: 10.3390/cells12060930.

33. Cui K, Chen T, Zhu Y et al. Engineering placenta-like organoids containing endogenous vascular cells from human-induced pluripotent stem cells. Bioeng Transl Med 2022; 8 (1): e10390. doi: 10.1002/btm2.10390.

34. Cui Y, Zhao H, Wu S et al. Human female reproductive system organoids: applications in developmental biology, disease modelling, and drug discovery. Stem Cell Rev Rep 2020; 16 (6): 1173–1184. doi: 10.1007/s12015-020-10039-0.

35. Chumduri C, Turco MY. Organoids of the female reproductive tract. J Mol Med (Berl) 2021; 99 (4): 531–553. doi: 10.1007/s00109-020-02 028-0.

ORCID authors

P. Gašparová 0000-0002-6354-6911

Z. Ballová 0000-0002-0605-948X

D. Bačenková 0000-0001-8459-849X

M. Trebuňová 0000-0001-5826-9692

E. Dosedla 0000-0001-8319-9008

Submitted/Doručené: 26. 10. 2023
Accepted/Prijaté: 1. 11. 2023
Assoc. Prof. Erik Dosedla, MD, PhD, MBA
Department of Gynaecology and Obstetrics
Faculty of Medicine
University P. J. Safarik in Košice
Hospital AGEL Košice-Šaca Inc.
Lúčna 57
040 15 Košice-Šaca
Slovak Republic
erik.dosedla@nke.agel.s
Štítky
Dětská gynekologie Gynekologie a porodnictví Reprodukční medicína

Článek vyšel v časopise

Česká gynekologie

Číslo 2

2024 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#