#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Potential sources of phthalates and bisphenol A and their significance in the development of metabolic diseases


Authors: MUDr. Ph.D. Miloš Mráz;  prof. MUDr. DrSc. Štěpán Svačina;  MUDr. Eva Kotrlíková;  MUDr. Roman Piecha;  Ing. Karel Vrbík;  Ing. Jana Pavloušková;  RNDr. CSc. Zdeňka Lacinová;  Ing. Adam Vavrouš;  doc. MUDr. Ph.D. Dana Müllerová;  MUDr. Dagmar Matějková;  MUDr. Ph.D. Jarmila Křížová
Authors‘ workplace: 3. interní klinika 1. LF UK a VFN v Praze 1;  Státní zdravotní ústav, Praha 2;  Ústav hygieny a preventivní medicíny LF UK v Plzni 3;  1. interní klinika LF UK a FN Plzeň 4
Published in: Čas. Lék. čes. 2016; 155: 121-125
Category: Original Article

Overview

Nowadays, there is increasing evidence showing that the development of the metabolic syndrome combining obesity, type 2 diabetes mellitus, arterial hypertension and dyslipidemia involves except of traditional risk factors (overnutrition, lack of physical activity, genetic predisposition) also the effect of environmental organic substances called organic pollutants or endocrine disruptors. These chemicals can be found in plastic covers, paints, flame retardants, exhaust gases, fertilizers as well as diverse daily utensils. Phthalates, used primarily as plasticizers, and bisphenol A, are among the most wide-spread members of this group.

The aim of this article is to provide a basic overview of the relationship between phthalates and bisphenol A and the etiopathogenesis of the metabolic syndrome and to highlight their potential sources. According to the analysis of materials used for parenteral nutrition and urinary excretion of phthalate metabolites and bisphenol A in subjects on long-term parenteral nutrition we suppose that currently used medical materials are safe with respect to the exposure to both phthalates and bisphenol A and that home environment, especially cosmetic products, might constitute a more probable source of these substances.

Keywords:
endocrine disruptors, phthalates, bisphenol A, obesity, type 2 diabetes mellitus


Sources

1. O'Rahilly S. Science, medicine, and the future. Non-insulin dependent diabetes mellitus: the gathering storm. BMJ 1997; 314: 955−959.

2. Reaven G, Abbasi F, McLaughlin T. Obesity, insulin resistance, and cardiovascular disease. Recent Prog Horm Res 2004; 59: 207−223.

3. Reaven G. Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 2002; 106: 286−288.

4. Bluher M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 2009; 117: 241−250.

5. Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg 2013; 148: 563−569.

6. Biemann R, Navarrete Santos A, Navarrete Santos A et al. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows. Biochem Biophys Res Commun 2012; 417: 747−752.

7. Chevalier N, Fenichel P. Endocrine disruptors: new players in the pathophysiology of type 2 diabetes? Diabetes Metab 2015;41:107−115.

8. De Coster S, van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health 2012; 2012: 713696.

9. Diabetes Fact Sheet. WHO, 2013. http://www. who. int/mediacentre/factsheets/fs312/en

10. Danaei G, Finucane MM, Lu Y et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011; 378: 31−40.

11. Neel BA, Sargis RM. The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes 2011; 60: 1838−1848.

12. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30: 293−342.

13. Rousselle C, Ormsby JN, Schaefer B et al. Meeting report: international workshop on endocrine disruptors: exposure and potential impact on consumers health. Regul Toxicol Pharmacol 2013; 65: 7−11.

14. Casals-Casas C, Feige JN, Desvergne B. Interference of pollutants with PPARs: endocrine disruption meets metabolism. Int J Obes (Lond) 2008; 32(suppl. 6): S53−S61.

15. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 2002; 8: 185−192.

16. Chevalier N, Fenichel P. Bisphenol A: targeting metabolic tissues. Rev Endocr Metab Disord 2015; 16(4): 299−309.

17. Kuo CC, Moon K, Thayer KA, Navas-Acien A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep 2013; 13: 831−849.

18. Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect 2012; 120: 779−789.

19. Rahman M, Brazel CS. The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci 2004; 29: 1223−1248.

20. Serrano SE, Karr CJ, Seixas NS et al. Dietary phthalate exposure in pregnant women and the impact of consumer practices. Int J Environ Res Public Health 2014; 11: 6193−6215.

21. Weschler CJ, Nazaroff WW. Semivolatile organic compounds in indoor environments. Atmospheric Environment 2008; 42: 9018−9040.

22. Silva MJ, Barr DB, Reidy JA et al. Urinary levels of seven phthalate metabolites in the U. S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect 2004; 112: 331−338.

23. Silva MJ, Malek NA, Hodge CC et al. Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 789: 393−404.

24. Silva MJ, Slakman AR, Reidy JA et al. Analysis of human urine for fifteen phthalate metabolites using automated solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 805: 161−167.

25. Silva MJ, Samandar E, Preau JL jr. et al. Quantification of 22 phthalate metabolites in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 860: 106−112.

26. Hauser R, Meeker JD, Park S et al. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect 2004; 112: 1734−1740.

27. Wittassek M, Koch HM, Angerer J, Brüning T. Assessing exposure to phthalates – The human biomonitoring approach. Mol Nutr Food Res 2011; 55: 7−31.

28. Stahlhut RW, van Wijngaarden E, Dye TD et al. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U. S. males. Environ Health Perspect 2007; 115: 876−882.

29. Hatch EE, Nelson JW, Qureshi MM et al. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999-2002. Environ Health 2008; 7: 27.

30. James-Todd T, Stahlhut R, Meeker JD et al. Urinary phthalate metabolite concentrations and diabetes among women in the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Environ Health Perspect 2012; 120: 1307−1313.

31. Lind PM, Zethelius B, Lind L. Circulating levels of phthalate metabolites are associated with prevalent diabetes in the elderly. Diabetes Care 2012; 35: 1519−1524.

32. Svensson K, Hernandez-Ramirez RU, Burguete-Garcia A et al. Phthalate exposure associated with self-reported diabetes among Mexican women. Environ Res 2011; 111: 792−796.

33. Parlett LE, Calafat AM, Swan SH. Women's exposure to phthalates in relation to use of personal care products. J Expo Sci Environ Epidemiol 2013; 23: 197−206.

34. Janesick A, Blumberg B. Minireview: PPARγ as the target of obesogens. J Steroid Biochem Mol Biol 2011; 127: 4−8.

35. Kahn BB, McGraw TE. Rosiglitazone, PPARγ, and Type 2 Diabetes. N Engl J Med 2010; 363: 2667−2669.

36. Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 2011; 127: 27−34.

37. Vandenberg LN, Maffini MV, Sonnenschein C et al. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 2009; 30: 75−95.

38. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U. S. population to bisphenol A and 4-tertiary-octylphenol: 2003−2004. Environ Health Perspect 2008; 116: 39−44.

39. Vandenberg LN, Hauser R, Marcus M et al. Human exposure to bisphenol A (BPA). Reprod Toxicol 2007; 24: 139−177.

40. Alonso-Magdalena P, Morimoto S, Ripoll C et al. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 2006; 114: 106−112.

41. Batista TM, Alonso-Magdalena P, Vieira E et al. Short-term treatment with bisphenol-A leads to metabolic abnormalities in adult male mice. PLoS One 2012; 7: e33814.

42. Kidani T, Kamei S, Miyawaki J et al. Bisphenol A downregulates Akt signaling and inhibits adiponectin production and secretion in 3T3-L1 adipocytes. J Atheroscler Thromb 2010; 17: 834−843.

43. Masuno H, Iwanami J, Kidani T et al. Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 2005; 84: 319−327.

44. Ning G, Bi Y, Wang T et al. Relationship of urinary bisphenol A concentration to risk for prevalent type 2 diabetes in Chinese adults: a cross-sectional analysis. Ann Intern Med 2011; 155: 368−374.

45. Shankar A, Teppala S. Relationship between urinary bisphenol A levels and diabetes mellitus. J Clin Endocrinol Metab 2011; 96: 3822−3826.

46. Silver MK, O'Neill MS, Sowers MR, Park SK. Urinary bisphenol A and type-2 diabetes in U. S. adults: data from NHANES 2003−2008. PLoS One 2011; 6: e26868.

47. Kim K, Park H. Association between urinary concentrations of bisphenol A and type 2 diabetes in Korean adults: a population-based cross-sectional study. Int J Hyg Environ Health 2013; 216: 467−471.

48. Müllerová D, Matějková D, Kovářová K et al. Predictors of urinary phthalate metabolites in Czech healthy normal body weight adults. FANTOM study. Biomarkers – v recenzním řízení.

49. Piecha R, Svačina S, Malý M et al. Urine level of phthalate metabolites and bisphenol A in relation to main metabolic syndrome components: dyslipidaemia, hypertension and type 2 diabetes (pilot study). Centr Eur J Public Health – v recenzním řízení.

50. Lacinová Z, Svačina S, Haluzík M. The relationship of phthalates, their metabolites and bisphenol A with metabolic changes and subcutaneous adipose tissue mRNA expression of metabolic genes in patients with obesity. Zasláno do tisku.

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental Hygienist
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#