#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A viral journey to the brain: Current considerations and future developments


Autoři: Nilda Vanesa Ayala-Nunez aff001;  Raphael Gaudin aff001
Působiště autorů: Institut de Recherche en Infectiologie de Montpellier (IRIM)—CNRS, Montpellier, France aff001;  Université de Montpellier, Montpellier, France aff002
Vyšlo v časopise: A viral journey to the brain: Current considerations and future developments. PLoS Pathog 16(5): e1008434. doi:10.1371/journal.ppat.1008434
Kategorie: Pearls
doi: https://doi.org/10.1371/journal.ppat.1008434


Zdroje

1. Mustafa YM, Meuren LM, Coelho SVA, de Arruda LB. Pathways Exploited by Flaviviruses to Counteract the Blood-Brain Barrier and Invade the Central Nervous System. Front Microbiol. 2019;10:525. Epub 2019/04/16. doi: 10.3389/fmicb.2019.00525 30984122; PubMed Central PMCID: PMC6447710.

2. Santiago-Tirado FH, Doering TL. False friends: Phagocytes as Trojan horses in microbial brain infections. PLoS Pathog. 2017;13(12):e1006680. Epub 2017/12/15. doi: 10.1371/journal.ppat.1006680 29240825; PubMed Central PMCID: PMC5730104.

3. Ludlow M, Kortekaas J, Herden C, Hoffmann B, Tappe D, Trebst C, et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 2016;131(2):159–84. Epub 2015/12/15. doi: 10.1007/s00401-015-1511-3 26659576; PubMed Central PMCID: PMC4713712.

4. Srikiatkhachorn A, Kelley JF. Endothelial cells in dengue hemorrhagic fever. Antiviral research. 2014;109:160–70. Epub 2014/07/16. doi: 10.1016/j.antiviral.2014.07.005 25025934; PubMed Central PMCID: PMC4148486.

5. Ayala-Nunez NV, Follain G, Delalande F, Hirschler A, Partiot E, Hale GL, et al. Zika virus enhances monocyte adhesion and transmigration favoring viral dissemination to neural cells. Nature communications. 2019;10(1):4430. Epub 2019/09/29. doi: 10.1038/s41467-019-12408-x 31562326; PubMed Central PMCID: PMC6764950.

6. Puerta-Guardo H, Glasner DR, Espinosa DA, Biering SB, Patana M, Ratnasiri K, et al. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell reports. 2019;26(6):1598–613 e8. Epub 2019/02/07. doi: 10.1016/j.celrep.2019.01.036 30726741.

7. Wang C, Puerta-Guardo H, Biering SB, Glasner DR, Tran EB, Patana M, et al. Endocytosis of flavivirus NS1 is required for NS1-mediated endothelial hyperpermeability and is abolished by a single N-glycosylation site mutation. PLoS Pathog. 2019;15(7):e1007938. Epub 2019/07/30. doi: 10.1371/journal.ppat.1007938 31356638; PubMed Central PMCID: PMC6687192.

8. Papa MP, Meuren LM, Coelho SVA, Lucas CGO, Mustafa YM, Lemos Matassoli F, et al. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption. Front Microbiol. 2017;8:2557. Epub 2018/01/10. doi: 10.3389/fmicb.2017.02557 29312238; PubMed Central PMCID: PMC5743735.

9. Chanthick C, Suttitheptumrong A, Rawarak N, Pattanakitsakul SN. Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection. Viruses. 2018;10(2). Epub 2018/02/09. doi: 10.3390/v10020069 29419739; PubMed Central PMCID: PMC5850376.

10. Peluso R, Haase A, Stowring L, Edwards M, Ventura P. A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology. 1985;147(1):231–6. Epub 1985/11/01. doi: 10.1016/0042-6822(85)90246-6 2998068.

11. Santiago-Tirado FH, Onken MD, Cooper JA, Klein RS, Doering TL. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. mBio. 2017;8(1). Epub 2017/02/02. doi: 10.1128/mBio.02183-16 28143979; PubMed Central PMCID: PMC5285505.

12. Mendez OA, Koshy AA. Toxoplasma gondii: Entry, association, and physiological influence on the central nervous system. PLoS Pathog. 2017;13(7):e1006351. Epub 2017/07/21. doi: 10.1371/journal.ppat.1006351 28727854; PubMed Central PMCID: PMC5519211.

13. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007;7(12):3759–65. Epub 2007/11/06. doi: 10.1021/nl072209h 17979310.

14. Roe K, Kumar M, Lum S, Orillo B, Nerurkar VR, Verma S. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. The Journal of general virology. 2012;93(Pt 6):1193–203. Epub 2012/03/09. doi: 10.1099/vir.0.040899-0 22398316; PubMed Central PMCID: PMC3755517.

15. Li F, Wang Y, Yu L, Cao S, Wang K, Yuan J, et al. Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection. Journal of virology. 2015;89(10):5602–14. Epub 2015/03/13. doi: 10.1128/JVI.00143-15 25762733; PubMed Central PMCID: PMC4442524.

16. Glasner DR, Ratnasiri K, Puerta-Guardo H, Espinosa DA, Beatty PR, Harris E. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog. 2017;13(11):e1006673. Epub 2017/11/10. doi: 10.1371/journal.ppat.1006673 29121099; PubMed Central PMCID: PMC5679539.

17. Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev. 2012;248(1):228–39. Epub 2012/06/26. doi: 10.1111/j.1600-065X.2012.01127.x 22725965; PubMed Central PMCID: PMC3383666.

18. Wu J, Yang S, Luo H, Zeng L, Ye L, Lu Y. Quantitative evaluation of monocyte transmigration into the brain following chemical opening of the blood-brain barrier in mice. Brain Res. 2006;1098(1):79–85. Epub 2006/08/16. doi: 10.1016/j.brainres.2006.04.074 16908012; PubMed Central PMCID: PMC2830797.

19. Paul AM, Acharya D, Duty L, Thompson EA, Le L, Stokic DS, et al. Osteopontin facilitates West Nile virus neuroinvasion via neutrophil "Trojan horse" transport. Scientific reports. 2017;7(1):4722. Epub 2017/07/07. doi: 10.1038/s41598-017-04839-7 28680095; PubMed Central PMCID: PMC5498593.

20. Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature. 2012;490(7419):283–7. Epub 2012/08/03. doi: 10.1038/nature11398 22854780; PubMed Central PMCID: PMC3470742.

21. Stolp B, Imle A, Coelho FM, Hons M, Gorina R, Lyck R, et al. HIV-1 Nef interferes with T-lymphocyte circulation through confined environments in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(45):18541–6. Epub 2012/10/25. doi: 10.1073/pnas.1204322109 23093676; PubMed Central PMCID: PMC3494961.

22. Paul CD, Devine A, Bishop K, Xu Q, Wulftange WJ, Burr H, et al. Human macrophages survive and adopt activated genotypes in living zebrafish. Scientific reports. 2019;9(1):1759. Epub 2019/02/12. doi: 10.1038/s41598-018-38186-y 30741975; PubMed Central PMCID: PMC6370805.

23. Passoni G, Langevin C, Palha N, Mounce BC, Briolat V, Affaticati P, et al. Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes. Dis Model Mech. 2017;10(7):847–57. Epub 2017/05/10. doi: 10.1242/dmm.029231 28483796; PubMed Central PMCID: PMC5536907.

24. Bramley JC, Drummond CG, Lennemann NJ, Good CA, Kim KS, Coyne CB. A Three-Dimensional Cell Culture System To Model RNA Virus Infections at the Blood-Brain Barrier. mSphere. 2017;2(3). Epub 2017/06/29. doi: 10.1128/mSphere.00206-17 28656176; PubMed Central PMCID: PMC5480033.

25. Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D, Penninger JM. Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc. 2019;14(11):3082–100. Epub 2019/09/27. doi: 10.1038/s41596-019-0213-z 31554955.

26. Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 2019. Epub 2019/10/09. doi: 10.1038/s41592-019-0586-5 31591580.

27. Fenech M, Girod V, Claveria V, Meance S, Abkarian M, Charlot B. Microfluidic blood vasculature replicas using backside lithography. Lab Chip. 2019;19(12):2096–106. Epub 2019/05/16. doi: 10.1039/c9lc00254e 31086935.

28. Ahn SI, Sei YJ, Park HJ, Kim J, Ryu Y, Choi JJ, et al. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nature communications. 2020;11(1):175. Epub 2020/01/12. doi: 10.1038/s41467-019-13896-7 31924752; PubMed Central PMCID: PMC6954233.

29. Chen MB, Whisler JA, Frose J, Yu C, Shin Y, Kamm RD. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc. 2017;12(5):865–80. Epub 2017/03/31. doi: 10.1038/nprot.2017.018 28358393; PubMed Central PMCID: PMC5509465.


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#