Influenza virus DI particles: Defective interfering or delightfully interesting?
Autoři:
Fadi G. Alnaji aff001; Christopher B. Brooke aff001
Působiště autorů:
Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
aff001; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
aff002
Vyšlo v časopise:
Influenza virus DI particles: Defective interfering or delightfully interesting?. PLoS Pathog 16(5): e32767. doi:10.1371/journal.ppat.1008436
Kategorie:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1008436
Zdroje
1. von Magnus P. Incomplete Forms of Influenza Virus. In: Smith KM, Lauffer MA, editors. Advances in Virus Research [Internet]. Academic Press; 1954 [cited 2019 Dec 19]. p. 59–79. Available from: http://www.sciencedirect.com/science/article/pii/S0065352708605291 doi: 10.1016/s0065-3527(08)60529-1 13228257
2. Gard S, von Magnus P. Studies on interference in experimental influenza: Purification and centrifugation experiments / By Svend Gard; Preben von Magnus [Internet]. Almqvist & Wiksell; 1947. (Arkiv för kemi, mineralogi och geologi). Available from: https://books.google.com/books?id=j-6RnAEACAAJ
3. Vignuzzi M, López CB. Defective viral genomes are key drivers of the virus-host interaction. Nat Microbiol. 2019;4(7):1075–1087. doi: 10.1038/s41564-019-0465-y 31160826
4. Brooke CB. Population Diversity and Collective Interactions during Influenza Virus Infection. J Virol. 2017 Nov 15;91(22).
5. Sanjuán R. Collective Infectious Units in Viruses. Trends in Microbiology. 2017 May;25(5):402–412. doi: 10.1016/j.tim.2017.02.003 28262512
6. Nayak DP, Chambers TM, Akkina RK. Defective-interfering (DI) RNAs of influenza viruses: origin, structure, expression, and interference. Curr Top Microbiol Immunol. 1985;114:103–151. doi: 10.1007/978-3-642-70227-3_3 3888540
7. Nayak DP, Sivasubramanian N, Davis AR, Cortini R, Sung J. Complete sequence analyses show that two defective interfering influenza viral RNAs contain a single internal deletion of a polymerase gene. Proc Natl Acad Sci USA. 1982 Apr;79(7):2216–2220. doi: 10.1073/pnas.79.7.2216 6954536
8. Fodor E, Mingay LJ, Crow M, Deng T, Brownlee GG. A Single Amino Acid Mutation in the PA Subunit of the Influenza Virus RNA Polymerase Promotes the Generation of Defective Interfering RNAs. J Virol. 2003 Apr 15;77(8):5017–5020. doi: 10.1128/JVI.77.8.5017-5020.2003 12663810
9. Vasilijevic J, Zamarreño N, Oliveros JC, Rodriguez-Frandsen A, Gómez G, Rodriguez G, et al. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog. 2017 Oct;13(10):e1006650. doi: 10.1371/journal.ppat.1006650 29023600
10. Lazzarini RA, Keene JD, Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981 Oct;26(2 Pt 2):145–154. doi: 10.1016/0092-8674(81)90298-1 7037195
11. Furusawa Y, Yamada S, da Silva Lopes TJ, Dutta J, Khan Z, Kriti D, et al. Influenza Virus Polymerase Mutation Stabilizes a Foreign Gene Inserted into the Virus Genome by Enhancing the Transcription/Replication Efficiency of the Modified Segment. MBio. 2019 Oct 1;10(5).
12. Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I, Karia D, et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature. 2019;573(7773):287–290. doi: 10.1038/s41586-019-1530-7 31485076
13. Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016;14(8):479–493. doi: 10.1038/nrmicro.2016.87 27396566
14. Pflug A, Guilligay D, Reich S, Cusack S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature. 2014 Dec;516(7531):355–360. doi: 10.1038/nature14008 25409142
15. Winter G, Fields S, Ratti G. The structure of two subgenomic RNAs from human influenza virus A/PR/8/34. Nucleic Acids Res. 1981 Dec 21;9(24):6907–6915. doi: 10.1093/nar/9.24.6907 7335495
16. Te Velthuis AJW, Long JC, Bauer DLV, Fan RLY, Yen H-L, Sharps J, et al. Mini viral RNAs act as innate immune agonists during influenza virus infection. Nat Microbiol. 2018;3(11):1234–1242. doi: 10.1038/s41564-018-0240-5 30224800
17. Saira K, Lin X, DePasse JV, Halpin R, Twaddle A, Stockwell T, et al. Sequence Analysis of In Vivo Defective Interfering-Like RNA of Influenza A H1N1 Pandemic Virus. Journal of Virology. 2013 Jul 15;87(14):8064–8074. doi: 10.1128/JVI.00240-13 23678180
18. Lui W-Y, Yuen C-K, Li C, Wong WM, Lui P-Y, Lin C-H, et al. SMRT sequencing revealed the diversity and characteristics of defective interfering RNAs in influenza A (H7N9) virus infection. Emerg Microbes Infect. 2019;8(1):662–674. doi: 10.1080/22221751.2019.1611346 31084471
19. Alnaji FG, Holmes JR, Rendon G, Vera JC, Fields CJ, Martin BE, et al. Sequencing Framework for the Sensitive Detection and Precise Mapping of Defective Interfering Particle-Associated Deletions across Influenza A and B Viruses. J Virol. 2019 Jun 1;93(11).
20. Jennings PA, Finch JT, Winter G, Robertson JS. Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA? Cell. 1983 Sep;34(2):619–627. doi: 10.1016/0092-8674(83)90394-x 6616623
21. Turner PE, Chao L. Prisoner’s dilemma in an RNA virus. Nature. 1999 Apr;398(6726):441–443. doi: 10.1038/18913 10201376
22. Martin MA, Kaul D, Tan GS, Woods CW, Koelle K. The Dynamics of Influenza A H3N2 Defective Viral Genomes from a Human Challenge Study. bioRxiv 814673 [Preprint]. 2019 Oct 22 [cited 2019 Oct 29]. http://biorxiv.org/lookup/doi/10.1101/814673
23. Genoyer E, López CB. The Impact of Defective Viruses on Infection and Immunity. Annu Rev Virol. 2019 Sep 29;6(1):547–566. doi: 10.1146/annurev-virology-092818-015652 31082310
24. Sun Y, Jain D, Koziol-White CJ, Genoyer E, Gilbert M, Tapia K, et al. Immunostimulatory Defective Viral Genomes from Respiratory Syncytial Virus Promote a Strong Innate Antiviral Response during Infection in Mice and Humans. Thomas PG, editor. PLoS Pathog. 2015 Sep 3;11(9):e1005122. doi: 10.1371/journal.ppat.1005122 26336095
25. Fitzsimmons WJ, Woods RJ, McCrone JT, Woodman A, Arnold JJ, Yennawar M, et al. A speed–fidelity trade-off determines the mutation rate and virulence of an RNA virus. Regoes R, editor. PLoS Biol. 2018 Jun 28;16(6):e2006459. doi: 10.1371/journal.pbio.2006459 29953453
26. Xu J, Sun Y, Li Y, Ruthel G, Weiss SR, Raj A, et al. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nat Commun. 2017 Dec;8(1):799. doi: 10.1038/s41467-017-00909-6 28986577
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 5
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Nejpodivnější vačnatci, rybí dvojníci, pradávná syfilis a katastrofické zapomínání – „jednohubky“ z výzkumu 2025/2
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Platelets are critical for survival and tissue integrity during murine pulmonary Aspergillus fumigatus infection
- A viral journey to the brain: Current considerations and future developments
- Trichinella spiralis-induced mastocytosis and erythropoiesis are simultaneously supported by a bipotent mast cell/erythrocyte precursor cell
- Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii