Enhancing bacterial survival through phenotypic heterogeneity
Autoři:
Leila M. Reyes Ruiz aff001; Caitlin L. Williams aff001; Rita Tamayo aff001
Působiště autorů:
Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
aff001
Vyšlo v časopise:
Enhancing bacterial survival through phenotypic heterogeneity. PLoS Pathog 16(5): e32767. doi:10.1371/journal.ppat.1008439
Kategorie:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1008439
Zdroje
1. Jiang X., et al., Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science, 2019. 363(6423): p. 181–187. doi: 10.1126/science.aau5238 30630933
2. Armbruster C.R., et al., Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations. Elife, 2019. 8.
3. Phillips Z.N., et al., Phase-variable bacterial loci: how bacteria gamble to maximise fitness in changing environments. Biochem Soc Trans, 2019. 47(4): p. 1131–1141. doi: 10.1042/BST20180633 31341035
4. van der Woude M.W. and Baumler A.J., Phase and antigenic variation in bacteria. Clin Microbiol Rev, 2004. 17(3): p. 581–611. doi: 10.1128/CMR.17.3.581-611.2004 15258095
5. Freitag C.S., et al., Genetic analysis of the phase variation control of expression of type 1 fimbriae in Escherichia coli. J Bacteriol, 1985. 162(2): p. 668–75. 2859269
6. Eisenstein B.I., Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science, 1981. 214(4518): p. 337–9. doi: 10.1126/science.6116279 6116279
7. Emerson J.E., et al., A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein. Mol Microbiol, 2009. 74(3): p. 541–56. doi: 10.1111/j.1365-2958.2009.06812.x 19656296
8. Anjuwon-Foster B.R. and Tamayo R., A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet, 2017. 13(3): p. e1006701. doi: 10.1371/journal.pgen.1006701 28346491
9. Schwan W.R., Regulation of fim genes in uropathogenic Escherichia coli. World J Clin Infect Dis, 2011. 1(1): p. 17–25. doi: 10.5495/wjcid.v1.i1.17 23638406
10. Abraham J.M., et al., An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A, 1985. 82(17): p. 5724–7. doi: 10.1073/pnas.82.17.5724 2863818
11. Schilling J.D., Mulvey M.A., and Hultgren S.J., Structure and function of Escherichia coli type 1 pili: new insight into the pathogenesis of urinary tract infections. J Infect Dis, 2001. 183 Suppl 1: p. S36–40.
12. Gunther N.W. t., et al., Assessment of virulence of uropathogenic Escherichia coli type 1 fimbrial mutants in which the invertible element is phase-locked on or off. Infect Immun, 2002. 70(7): p. 3344–54. doi: 10.1128/IAI.70.7.3344-3354.2002 12065472
13. Snyder J.A., et al., Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun, 2006. 74(2): p. 1387–93. doi: 10.1128/IAI.74.2.1387-1393.2006 16428790
14. Srikhanta Y.N., et al., The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A, 2005. 102(15): p. 5547–51. doi: 10.1073/pnas.0501169102 15802471
15. Atack J.M., et al., Phasevarions of Bacterial Pathogens: Methylomics Sheds New Light on Old Enemies. Trends Microbiol, 2018. 26(8): p. 715–726. doi: 10.1016/j.tim.2018.01.008 29452952
16. Manso A.S., et al., A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun, 2014. 5: p. 5055. doi: 10.1038/ncomms6055 25268848
17. Decker K.B., et al., The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. Microbiology, 2012. 158(Pt 7): p. 1665–76. doi: 10.1099/mic.0.058941-0 22628479
18. Stibitz S., et al., Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature, 1989. 338(6212): p. 266–9. doi: 10.1038/338266a0 2537932
19. Garrett E.M., et al., Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence. PLoS Biol, 2019. 17(10): p. e3000379. doi: 10.1371/journal.pbio.3000379 31658249
20. El Meouche I., et al., Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR. PLoS ONE, 2013. 8(12): p. e83748. doi: 10.1371/journal.pone.0083748 24358307
21. McKee R.W., et al., The second messenger cyclic di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol, 2013. 195(22): p. 5174–85. doi: 10.1128/JB.00501-13 24039264
22. Sekulovic O., et al., Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genet, 2018. 14(4): p. e1007332. doi: 10.1371/journal.pgen.1007332 29621238
23. Romling U., Galperin M.Y., and Gomelsky M., Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev, 2013. 77(1): p. 1–52. doi: 10.1128/MMBR.00043-12 23471616
24. Purcell E.B. and Tamayo R., Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev, 2016. 40(5): p. 753–73. doi: 10.1093/femsre/fuw013 27354347
25. Hengge R., Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol, 2009. 7(4): p. 263–73. doi: 10.1038/nrmicro2109 19287449
26. Coyne M.J., et al., Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10446–51. doi: 10.1073/pnas.1832655100 12915735
27. Weigel W.A. and Dersch P., Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect, 2018. 20(9–10): p. 570–577. doi: 10.1016/j.micinf.2018.01.008 29409898
28. Tipton K.A., Dimitrova D., and Rather P.N., Phase-Variable Control of Multiple Phenotypes in Acinetobacter baumannii Strain AB5075. J Bacteriol, 2015. 197(15): p. 2593–9. doi: 10.1128/JB.00188-15 26013481
29. Chin C.Y., et al., A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nat Microbiol, 2018. 3(5): p. 563–569. doi: 10.1038/s41564-018-0151-5 29693659
30. Tipton K.A. and Rather P.N., An ompR-envZ Two-Component System Ortholog Regulates Phase Variation, Osmotic Tolerance, Motility, and Virulence in Acinetobacter baumannii Strain AB5075. J Bacteriol, 2017. 199(3): e00705–16. doi: 10.1128/JB.00705-16 27872182
31. Anjuwon-Foster B.R. and Tamayo R., Phase variation of Clostridium difficile virulence factors. Gut Microbes, 2018. 9(1): p. 76–83. doi: 10.1080/19490976.2017.1362526 28806147
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 5
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Nejpodivnější vačnatci, rybí dvojníci, pradávná syfilis a katastrofické zapomínání – „jednohubky“ z výzkumu 2025/2
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Platelets are critical for survival and tissue integrity during murine pulmonary Aspergillus fumigatus infection
- A viral journey to the brain: Current considerations and future developments
- Trichinella spiralis-induced mastocytosis and erythropoiesis are simultaneously supported by a bipotent mast cell/erythrocyte precursor cell
- Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii