#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Enhancing bacterial survival through phenotypic heterogeneity


Autoři: Leila M. Reyes Ruiz aff001;  Caitlin L. Williams aff001;  Rita Tamayo aff001
Působiště autorů: Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America aff001
Vyšlo v časopise: Enhancing bacterial survival through phenotypic heterogeneity. PLoS Pathog 16(5): e32767. doi:10.1371/journal.ppat.1008439
Kategorie: Pearls
doi: https://doi.org/10.1371/journal.ppat.1008439


Zdroje

1. Jiang X., et al., Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science, 2019. 363(6423): p. 181–187. doi: 10.1126/science.aau5238 30630933

2. Armbruster C.R., et al., Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations. Elife, 2019. 8.

3. Phillips Z.N., et al., Phase-variable bacterial loci: how bacteria gamble to maximise fitness in changing environments. Biochem Soc Trans, 2019. 47(4): p. 1131–1141. doi: 10.1042/BST20180633 31341035

4. van der Woude M.W. and Baumler A.J., Phase and antigenic variation in bacteria. Clin Microbiol Rev, 2004. 17(3): p. 581–611. doi: 10.1128/CMR.17.3.581-611.2004 15258095

5. Freitag C.S., et al., Genetic analysis of the phase variation control of expression of type 1 fimbriae in Escherichia coli. J Bacteriol, 1985. 162(2): p. 668–75. 2859269

6. Eisenstein B.I., Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science, 1981. 214(4518): p. 337–9. doi: 10.1126/science.6116279 6116279

7. Emerson J.E., et al., A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein. Mol Microbiol, 2009. 74(3): p. 541–56. doi: 10.1111/j.1365-2958.2009.06812.x 19656296

8. Anjuwon-Foster B.R. and Tamayo R., A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet, 2017. 13(3): p. e1006701. doi: 10.1371/journal.pgen.1006701 28346491

9. Schwan W.R., Regulation of fim genes in uropathogenic Escherichia coli. World J Clin Infect Dis, 2011. 1(1): p. 17–25. doi: 10.5495/wjcid.v1.i1.17 23638406

10. Abraham J.M., et al., An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A, 1985. 82(17): p. 5724–7. doi: 10.1073/pnas.82.17.5724 2863818

11. Schilling J.D., Mulvey M.A., and Hultgren S.J., Structure and function of Escherichia coli type 1 pili: new insight into the pathogenesis of urinary tract infections. J Infect Dis, 2001. 183 Suppl 1: p. S36–40.

12. Gunther N.W. t., et al., Assessment of virulence of uropathogenic Escherichia coli type 1 fimbrial mutants in which the invertible element is phase-locked on or off. Infect Immun, 2002. 70(7): p. 3344–54. doi: 10.1128/IAI.70.7.3344-3354.2002 12065472

13. Snyder J.A., et al., Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun, 2006. 74(2): p. 1387–93. doi: 10.1128/IAI.74.2.1387-1393.2006 16428790

14. Srikhanta Y.N., et al., The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A, 2005. 102(15): p. 5547–51. doi: 10.1073/pnas.0501169102 15802471

15. Atack J.M., et al., Phasevarions of Bacterial Pathogens: Methylomics Sheds New Light on Old Enemies. Trends Microbiol, 2018. 26(8): p. 715–726. doi: 10.1016/j.tim.2018.01.008 29452952

16. Manso A.S., et al., A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun, 2014. 5: p. 5055. doi: 10.1038/ncomms6055 25268848

17. Decker K.B., et al., The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. Microbiology, 2012. 158(Pt 7): p. 1665–76. doi: 10.1099/mic.0.058941-0 22628479

18. Stibitz S., et al., Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature, 1989. 338(6212): p. 266–9. doi: 10.1038/338266a0 2537932

19. Garrett E.M., et al., Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence. PLoS Biol, 2019. 17(10): p. e3000379. doi: 10.1371/journal.pbio.3000379 31658249

20. El Meouche I., et al., Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR. PLoS ONE, 2013. 8(12): p. e83748. doi: 10.1371/journal.pone.0083748 24358307

21. McKee R.W., et al., The second messenger cyclic di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol, 2013. 195(22): p. 5174–85. doi: 10.1128/JB.00501-13 24039264

22. Sekulovic O., et al., Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genet, 2018. 14(4): p. e1007332. doi: 10.1371/journal.pgen.1007332 29621238

23. Romling U., Galperin M.Y., and Gomelsky M., Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev, 2013. 77(1): p. 1–52. doi: 10.1128/MMBR.00043-12 23471616

24. Purcell E.B. and Tamayo R., Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev, 2016. 40(5): p. 753–73. doi: 10.1093/femsre/fuw013 27354347

25. Hengge R., Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol, 2009. 7(4): p. 263–73. doi: 10.1038/nrmicro2109 19287449

26. Coyne M.J., et al., Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10446–51. doi: 10.1073/pnas.1832655100 12915735

27. Weigel W.A. and Dersch P., Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect, 2018. 20(9–10): p. 570–577. doi: 10.1016/j.micinf.2018.01.008 29409898

28. Tipton K.A., Dimitrova D., and Rather P.N., Phase-Variable Control of Multiple Phenotypes in Acinetobacter baumannii Strain AB5075. J Bacteriol, 2015. 197(15): p. 2593–9. doi: 10.1128/JB.00188-15 26013481

29. Chin C.Y., et al., A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nat Microbiol, 2018. 3(5): p. 563–569. doi: 10.1038/s41564-018-0151-5 29693659

30. Tipton K.A. and Rather P.N., An ompR-envZ Two-Component System Ortholog Regulates Phase Variation, Osmotic Tolerance, Motility, and Virulence in Acinetobacter baumannii Strain AB5075. J Bacteriol, 2017. 199(3): e00705–16. doi: 10.1128/JB.00705-16 27872182

31. Anjuwon-Foster B.R. and Tamayo R., Phase variation of Clostridium difficile virulence factors. Gut Microbes, 2018. 9(1): p. 76–83. doi: 10.1080/19490976.2017.1362526 28806147


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#