Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication
Autoři:
Xiaohui Ju aff001; Guangtao Xiang aff001; Mingli Gong aff001; Rui Yang aff002; Jierui Qin aff001; Yafei Li aff003; Yuchen Nan aff003; Yonglin Yang aff004; Qiangfeng Cliff Zhang aff002; Qiang Ding aff001
Působiště autorů:
Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
aff001; School of Life Sciences, Tsinghua University, Beijing, China
aff002; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
aff003; Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
aff004; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
aff005
Vyšlo v časopise:
Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication. PLoS Pathog 16(5): e32767. doi:10.1371/journal.ppat.1008488
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008488
Souhrn
There are approximately 20 million events of hepatitis E virus (HEV) infection worldwide annually. The genome of HEV is a single-strand, positive-sense RNA containing 5’ and 3’ untranslated regions and three open reading frames (ORF). HEV genome has 5’ cap and 3’ poly(A) tail to mimic host mRNA to escape the host innate immune surveillance and utilize host translational machineries for viral protein translation. The replication mechanism of HEV is poorly understood, especially how the viral polymerase distinguishes viral RNA from host mRNA to synthesize new viral genomes. We hypothesize that the HEV genome contains cis-acting elements that can be recognized by the virally encoded polymerase as “self” for replication. To identify functional cis-acting elements systematically across the HEV genome, we utilized an ORF1 transcomplementation system. Ultimately, we found two highly conserved cis-acting RNA elements within the ORF1 and ORF2 coding regions that are required for viral genome replication in a diverse panel of HEV genotypes. Synonymous mutations in the cis-acting RNA elements, not altering the ORF1 and ORF2 protein sequences, significantly impaired production of infectious viral particles. Mechanistic studies revealed that the cis-acting elements form secondary structures needed to interact with the HEV ORF1 protein to promote HEV replication. Thus, these cis-acting elements function as a scaffold, providing a specific “signal” that recruits viral and host factors to assemble the viral replication complex. Altogether, this work not only facilitates our understanding of the HEV life cycle and provides novel, RNA-directed targets for potential HEV treatments, but also sheds light on the development of HEV as a therapeutic delivery vector.
Klíčová slova:
Hepatitis E virus – Immunoprecipitation – RNA structure – RNA synthesis – Viral genome – Viral genomics – Viral replication – Viral replication complex
Zdroje
1. Nimgaonkar I, Ding Q, Schwartz RE, Ploss A. Hepatitis E virus: advances and challenges. Nat Rev Gastroenterol Hepatol. 2018;15(2):96–110. Epub 2017/11/23. doi: 10.1038/nrgastro.2017.150 29162935.
2. Hoofnagle JH, Nelson KE, Purcell RH. Hepatitis E. N Engl J Med. 2012;367(13):1237–44. Epub 2012/09/28. doi: 10.1056/NEJMra1204512 23013075.
3. Kamar N, Selves J, Mansuy JM, Ouezzani L, Peron JM, Guitard J, et al. Hepatitis E virus and chronic hepatitis in organ-transplant recipients. N Engl J Med. 2008;358(8):811–7. Epub 2008/02/22. doi: 10.1056/NEJMoa0706992 18287603.
4. Dalton HR, Bendall RP, Keane FE, Tedder RS, Ijaz S. Persistent carriage of hepatitis E virus in patients with HIV infection. N Engl J Med. 2009;361(10):1025–7. Epub 2009/09/04. doi: 10.1056/NEJMc0903778 19726781.
5. Kumar S, Subhadra S, Singh B, Panda BK. Hepatitis E virus: the current scenario. Int J Infect Dis. 2013;17(4):e228–33. Epub 2013/01/15. doi: 10.1016/j.ijid.2012.11.026 23313154.
6. Perez-Gracia MT, Suay-Garcia B, Mateos-Lindemann ML. Hepatitis E and pregnancy: current state. Rev Med Virol. 2017;27(3):e1929. Epub 2017/03/21. doi: 10.1002/rmv.1929 28318080.
7. Reyes GR, Purdy MA, Kim JP, Luk KC, Young LM, Fry KE, et al. Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science. 1990;247(4948):1335–9. Epub 1990/03/16. doi: 10.1126/science.2107574 2107574.
8. Meister TL, Bruening J, Todt D, Steinmann E. Cell culture systems for the study of hepatitis E virus. Antiviral Res. 2019;163:34–49. Epub 2019/01/18. doi: 10.1016/j.antiviral.2019.01.007 30653997.
9. Todt D, Friesland M, Moeller N, Praditya D, Kinast V, Bruggemann Y, et al. Robust hepatitis E virus infection and transcriptional response in human hepatocytes. Proc Natl Acad Sci U S A. 2020;117(3):1731–41. Epub 2020/01/04. doi: 10.1073/pnas.1912307117 31896581; PubMed Central PMCID: PMC6983376.
10. Ju X, Ding Q. Hepatitis E Virus Assembly and Release. Viruses. 2019;11(6). Epub 2019/06/12. doi: 10.3390/v11060539 31181848; PubMed Central PMCID: PMC6631228.
11. Rozanov MN, Koonin EV, Gorbalenya AE. Conservation of the putative methyltransferase domain: a hallmark of the 'Sindbis-like' supergroup of positive-strand RNA viruses. J Gen Virol. 1992;73 (Pt 8):2129–34. Epub 1992/08/01. doi: 10.1099/0022-1317-73-8-2129 1645151.
12. Magden J, Takeda N, Li T, Auvinen P, Ahola T, Miyamura T, et al. Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J Virol. 2001;75(14):6249–55. Epub 2001/06/20. doi: 10.1128/JVI.75.14.6249-6255.2001 11413290; PubMed Central PMCID: PMC114346.
13. Parvez MK. Mutational analysis of hepatitis E virus ORF1 "Y-domain": Effects on RNA replication and virion infectivity. World J Gastroenterol. 2017;23(4):590–602. Epub 2017/02/22. doi: 10.3748/wjg.v23.i4.590 28216965; PubMed Central PMCID: PMC5292332.
14. Koonin EV, Gorbalenya AE, Purdy MA, Rozanov MN, Reyes GR, Bradley DW. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A. 1992;89(17):8259–63. Epub 1992/09/01. doi: 10.1073/pnas.89.17.8259 1518855; PubMed Central PMCID: PMC49897.
15. Karpe YA, Lole KS. Deubiquitination activity associated with hepatitis E virus putative papain-like cysteine protease. J Gen Virol. 2011;92(Pt 9):2088–92. Epub 2011/06/10. doi: 10.1099/vir.0.033738-0 21653754.
16. Paliwal D, Panda SK, Kapur N, Varma SP, Durgapal H. Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein. J Gen Virol. 2014;95(Pt 8):1689–700. Epub 2014/05/06. doi: 10.1099/vir.0.066142-0 24795447.
17. Pudupakam RS, Kenney SP, Cordoba L, Huang YW, Dryman BA, Leroith T, et al. Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication. J Virol. 2011;85(19):10031–40. Epub 2011/07/22. doi: 10.1128/JVI.00763-11 21775444; PubMed Central PMCID: PMC3196386.
18. Pudupakam RS, Huang YW, Opriessnig T, Halbur PG, Pierson FW, Meng XJ. Deletions of the hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: evidence for attenuation of HVR deletion mutants in vivo. J Virol. 2009;83(1):384–95. Epub 2008/10/24. doi: 10.1128/JVI.01854-08 18945785; PubMed Central PMCID: PMC2612298.
19. Purdy MA, Lara J, Khudyakov YE. The hepatitis E virus polyproline region is involved in viral adaptation. PLoS One. 2012;7(4):e35974. Epub 2012/05/01. doi: 10.1371/journal.pone.0035974 22545153; PubMed Central PMCID: PMC3335810.
20. Neuvonen M, Ahola T. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J Mol Biol. 2009;385(1):212–25. Epub 2008/11/06. doi: 10.1016/j.jmb.2008.10.045 18983849.
21. Anang S, Subramani C, Nair VP, Kaul S, Kaushik N, Sharma C, et al. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins. Sci Rep. 2016;6:25133. Epub 2016/04/27. doi: 10.1038/srep25133 27113483; PubMed Central PMCID: PMC4844956.
22. Karpe YA, Lole KS. RNA 5'-triphosphatase activity of the hepatitis E virus helicase domain. J Virol. 2010;84(18):9637–41. Epub 2010/07/02. doi: 10.1128/JVI.00492-10 20592074; PubMed Central PMCID: PMC2937651.
23. Karpe YA, Lole KS. NTPase and 5' to 3' RNA duplex-unwinding activities of the hepatitis E virus helicase domain. J Virol. 2010;84(7):3595–602. Epub 2010/01/15. doi: 10.1128/JVI.02130-09 20071563; PubMed Central PMCID: PMC2838093.
24. Mhaindarkar V, Sharma K, Lole KS. Mutagenesis of hepatitis E virus helicase motifs: effects on enzyme activity. Virus Res. 2014;179:26–33. Epub 2013/12/18. doi: 10.1016/j.virusres.2013.11.022 24333153.
25. Tam AW, Smith MM, Guerra ME, Huang CC, Bradley DW, Fry KE, et al. Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology. 1991;185(1):120–31. Epub 1991/11/01. doi: 10.1016/0042-6822(91)90760-9 1926770.
26. Ropp SL, Tam AW, Beames B, Purdy M, Frey TK. Expression of the hepatitis E virus ORF1. Arch Virol. 2000;145(7):1321–37. Epub 2000/08/30. doi: 10.1007/s007050070093 10963340.
27. Sehgal D, Thomas S, Chakraborty M, Jameel S. Expression and processing of the Hepatitis E virus ORF1 nonstructural polyprotein. Virol J. 2006;3:38. Epub 2006/05/27. doi: 10.1186/1743-422X-3-38 16725054; PubMed Central PMCID: PMC1481634.
28. Szkolnicka D, Pollan A, Da Silva N, Oechslin N, Gouttenoire J, Moradpour D. Recombinant Hepatitis E Viruses Harboring Tags in the ORF1 Protein. J Virol. 2019;93(19). Epub 2019/07/19. doi: 10.1128/JVI.00459-19 31315997; PubMed Central PMCID: PMC6744232.
29. Yin X, Ying D, Lhomme S, Tang Z, Walker CM, Xia N, et al. Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection. Proc Natl Acad Sci U S A. 2018;115(18):4773–8. Epub 2018/04/20. doi: 10.1073/pnas.1721345115 29669922; PubMed Central PMCID: PMC5939091.
30. Ding Q, Heller B, Capuccino JM, Song B, Nimgaonkar I, Hrebikova G, et al. Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc Natl Acad Sci U S A. 2017;114(5):1147–52. Epub 2017/01/18. doi: 10.1073/pnas.1614955114 28096411; PubMed Central PMCID: PMC5293053.
31. Yamada K, Takahashi M, Hoshino Y, Takahashi H, Ichiyama K, Nagashima S, et al. ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J Gen Virol. 2009;90(Pt 8):1880–91. Epub 2009/04/03. doi: 10.1099/vir.0.010561-0 19339479.
32. Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol. 2016;7:1419. Epub 2016/09/23. doi: 10.3389/fmicb.2016.01419 27656178; PubMed Central PMCID: PMC5013053.
33. Kenney SP, Meng XJ. Hepatitis E Virus Genome Structure and Replication Strategy. Cold Spring Harb Perspect Med. 2019;9(1). Epub 2018/03/14. doi: 10.1101/cshperspect.a031724 29530948.
34. Varma SP, Kumar A, Kapur N, Durgapal H, Acharya SK, Panda SK. Hepatitis E virus replication involves alternating negative- and positive-sense RNA synthesis. J Gen Virol. 2011;92(Pt 3):572–81. Epub 2010/12/03. doi: 10.1099/vir.0.027714-0 21123540.
35. Graff J, Torian U, Nguyen H, Emerson SU. A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. J Virol. 2006;80(12):5919–26. Epub 2006/05/30. doi: 10.1128/JVI.00046-06 16731930; PubMed Central PMCID: PMC1472559.
36. Ding Q, Nimgaonkar I, Archer NF, Bram Y, Heller B, Schwartz RE, et al. Identification of the Intragenomic Promoter Controlling Hepatitis E Virus Subgenomic RNA Transcription. MBio. 2018;9(3). Epub 2018/05/10. doi: 10.1128/mBio.00769-18 29739903; PubMed Central PMCID: PMC5941075.
37. Fu RM, Decker CC, Dao Thi VL. Cell Culture Models for Hepatitis E Virus. Viruses. 2019;11(7). Epub 2019/07/07. doi: 10.3390/v11070608 31277308; PubMed Central PMCID: PMC6669563.
38. Zhou X, Xu L, Wang Y, Wang W, Sprengers D, Metselaar HJ, et al. Requirement of the eukaryotic translation initiation factor 4F complex in hepatitis E virus replication. Antiviral Res. 2015;124:11–9. Epub 2015/11/04. doi: 10.1016/j.antiviral.2015.10.016 26526587.
39. Surjit M, Jameel S, Lal SK. The ORF2 protein of hepatitis E virus binds the 5' region of viral RNA. J Virol. 2004;78(1):320–8. Epub 2003/12/13. doi: 10.1128/JVI.78.1.320-328.2004 14671114; PubMed Central PMCID: PMC303377.
40. Agrawal S, Gupta D, Panda SK. The 3' end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology. 2001;282(1):87–101. Epub 2001/03/22. doi: 10.1006/viro.2000.0819 11259193.
41. Graff J, Nguyen H, Kasorndorkbua C, Halbur PG, St Claire M, Purcell RH, et al. In vitro and in vivo mutational analysis of the 3'-terminal regions of hepatitis e virus genomes and replicons. J Virol. 2005;79(2):1017–26. Epub 2004/12/23. doi: 10.1128/JVI.79.2.1017-1026.2005 15613330; PubMed Central PMCID: PMC538530.
42. Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta. 2009;1789(9–10):495–517. Epub 2009/09/29. doi: 10.1016/j.bbagrm.2009.09.007 19781674; PubMed Central PMCID: PMC2783963.
43. Newburn LR, White KA. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology. 2015;479–480:434–43. Epub 2015/03/12. doi: 10.1016/j.virol.2015.02.032 25759098.
44. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15. Epub 2003/06/26. doi: 10.1093/nar/gkg595 12824337; PubMed Central PMCID: PMC169194.
45. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics. 2008;9:474. Epub 2008/11/19. doi: 10.1186/1471-2105-9-474 19014431; PubMed Central PMCID: PMC2621365.
46. Markham NR, Zuker M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol. 2008;453:3–31. Epub 2008/08/21. doi: 10.1007/978-1-60327-429-6_1 18712296.
47. Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010;11:129. Epub 2010/03/17. doi: 10.1186/1471-2105-11-129 20230624; PubMed Central PMCID: PMC2984261.
48. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr., Swanstrom R, et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460(7256):711–6. Epub 2009/08/08. doi: 10.1038/nature08237 19661910; PubMed Central PMCID: PMC2724670.
49. Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, et al. Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A. 2011;108(27):11063–8. Epub 2011/06/07. doi: 10.1073/pnas.1106501108 21642531; PubMed Central PMCID: PMC3131332.
50. LeDesma R, Nimgaonkar I, Ploss A. Hepatitis E Virus Replication. Viruses. 2019;11(8). Epub 2019/08/09. doi: 10.3390/v11080719 31390784; PubMed Central PMCID: PMC6723718.
51. Cao D, Huang YW, Meng XJ. The nucleotides on the stem-loop RNA structure in the junction region of the hepatitis E virus genome are critical for virus replication. J Virol. 2010;84(24):13040–4. Epub 2010/10/15. doi: 10.1128/JVI.01475-10 20943962; PubMed Central PMCID: PMC3004356.
52. Emerson SU, Zhang M, Meng XJ, Nguyen H, St Claire M, Govindarajan S, et al. Recombinant hepatitis E virus genomes infectious for primates: importance of capping and discovery of a cis-reactive element. Proc Natl Acad Sci U S A. 2001;98(26):15270–5. Epub 2001/12/14. doi: 10.1073/pnas.251555098 11742081; PubMed Central PMCID: PMC65019.
53. Huang YW, Haqshenas G, Kasorndorkbua C, Halbur PG, Emerson SU, Meng XJ. Capped RNA transcripts of full-length cDNA clones of swine hepatitis E virus are replication competent when transfected into Huh7 cells and infectious when intrahepatically inoculated into pigs. J Virol. 2005;79(3):1552–8. Epub 2005/01/15. doi: 10.1128/JVI.79.3.1552-1558.2005 15650181; PubMed Central PMCID: PMC544089.
54. Cordoba L, Feagins AR, Opriessnig T, Cossaboom CM, Dryman BA, Huang YW, et al. Rescue of a genotype 4 human hepatitis E virus from cloned cDNA and characterization of intergenotypic chimeric viruses in cultured human liver cells and in pigs. J Gen Virol. 2012;93(Pt 10):2183–94. Epub 2012/07/28. doi: 10.1099/vir.0.043711-0 22837416; PubMed Central PMCID: PMC3541786.
55. Emerson SU, Nguyen HT, Torian U, Burke D, Engle R, Purcell RH. Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. J Virol. 2010;84(18):9059–69. Epub 2010/07/09. doi: 10.1128/JVI.00593-10 20610720; PubMed Central PMCID: PMC2937629.
56. Zhou Z, Dang Y, Zhou M, Li L, Yu CH, Fu J, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A. 2016;113(41):E6117–E25. Epub 2016/09/28. doi: 10.1073/pnas.1606724113 27671647; PubMed Central PMCID: PMC5068308.
57. Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12(1):32–42. Epub 2010/11/26. doi: 10.1038/nrg2899 21102527; PubMed Central PMCID: PMC3074964.
58. Hershberg R, Petrov DA. Selection on codon bias. Annu Rev Genet. 2008;42:287–99. Epub 2008/11/06. doi: 10.1146/annurev.genet.42.110807.091442 18983258.
59. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell. 2010;40(6):939–53. Epub 2010/12/22. doi: 10.1016/j.molcel.2010.12.011 21172659; PubMed Central PMCID: PMC3021903.
60. Gilbert C, Kristjuhan A, Winkler GS, Svejstrup JQ. Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol Cell. 2004;14(4):457–64. Epub 2004/05/20. doi: 10.1016/s1097-2765(04)00239-4 15149595.
61. Emerson SU, Nguyen HT, Torian U, Mather K, Firth AE. An essential RNA element resides in a central region of hepatitis E virus ORF2. J Gen Virol. 2013;94(Pt 7):1468–76. Epub 2013/03/22. doi: 10.1099/vir.0.051870-0 23515023; PubMed Central PMCID: PMC3709636.
62. Shukla P, Nguyen HT, Torian U, Engle RE, Faulk K, Dalton HR, et al. Cross-species infections of cultured cells by hepatitis E virus and discovery of an infectious virus-host recombinant. Proc Natl Acad Sci U S A. 2011;108(6):2438–43. Epub 2011/01/26. doi: 10.1073/pnas.1018878108 21262830; PubMed Central PMCID: PMC3038723.
63. Kenney SP, Meng XJ. The lysine residues within the human ribosomal protein S17 sequence naturally inserted into the viral nonstructural protein of a unique strain of hepatitis E virus are important for enhanced virus replication. J Virol. 2015;89(7):3793–803. Epub 2015/01/23. doi: 10.1128/JVI.03582-14 25609799; PubMed Central PMCID: PMC4403402.
64. Lindenbach BD, Rice CM. Unravelling hepatitis C virus replication from genome to function. Nature. 2005;436(7053):933–8. Epub 2005/08/19. doi: 10.1038/nature04077 16107832.
65. Wu B, Grigull J, Ore MO, Morin S, White KA. Global organization of a positive-strand RNA virus genome. PLoS Pathog. 2013;9(5):e1003363. Epub 2013/05/30. doi: 10.1371/journal.ppat.1003363 23717202; PubMed Central PMCID: PMC3662671.
66. Dethoff EA, Boerneke MA, Gokhale NS, Muhire BM, Martin DP, Sacco MT, et al. Pervasive tertiary structure in the dengue virus RNA genome. Proc Natl Acad Sci U S A. 2018;115(45):11513–8. Epub 2018/10/21. doi: 10.1073/pnas.1716689115 30341219; PubMed Central PMCID: PMC6233125.
67. Meng XJ. Expanding Host Range and Cross-Species Infection of Hepatitis E Virus. PLoS Pathog. 2016;12(8):e1005695. Epub 2016/08/05. doi: 10.1371/journal.ppat.1005695 27490119; PubMed Central PMCID: PMC4973869.
68. Stobart CC, Moore ML. RNA virus reverse genetics and vaccine design. Viruses. 2014;6(7):2531–50. Epub 2014/06/27. doi: 10.3390/v6072531 24967693; PubMed Central PMCID: PMC4113782.
69. Monoclonal CoMoP, Antibodies IfLAR, Council NR. Monoclonal Antibody Production Washington, DC: NATIONAL ACADEMY PRESS; 1999.
70. Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, et al. Divergent lncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells. Cell Stem Cell. 2016;18(5):637–52. Epub 2016/03/22. doi: 10.1016/j.stem.2016.01.024 26996597.
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 5
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Nejpodivnější vačnatci, rybí dvojníci, pradávná syfilis a katastrofické zapomínání – „jednohubky“ z výzkumu 2025/2
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Platelets are critical for survival and tissue integrity during murine pulmonary Aspergillus fumigatus infection
- A viral journey to the brain: Current considerations and future developments
- Trichinella spiralis-induced mastocytosis and erythropoiesis are simultaneously supported by a bipotent mast cell/erythrocyte precursor cell
- Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii