Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2
Autoři:
Adrien Breiman aff001; Nathalie Ruvën-Clouet aff001; Jacques Le Pendu aff001
Působiště autorů:
Université de Nantes, Inserm, CRCINA, Nantes, France
aff001; CHU de Nantes, Nantes, France
aff002; Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation, Nantes, France
aff003
Vyšlo v časopise:
Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. PLoS Pathog 16(5): e1008556. doi:10.1371/journal.ppat.1008556
Kategorie:
Opinion
doi:
https://doi.org/10.1371/journal.ppat.1008556
Zdroje
1. Bishop JR, Gagneux P. Evolution of carbohydrate antigens—microbial forces shaping host glycomes? Glycobiology. 2007;17:23R–34R. doi: 10.1093/glycob/cwm005 17237137
2. Galili U. Evolution in primates by “Catastrophic-selection” interplay between enveloped virus epidemics, mutated genes of enzymes synthesizing carbohydrate antigens, and natural anticarbohydrate antibodies. Am J Phys Anthropol. 2019;168:352–63. doi: 10.1002/ajpa.23745 30578545
3. Dhar C, Sasmal A, Varki A. Serum Sickness” to “Xenosialitis”: Past, Present, and Future Significance of the Non-human Sialic Acid Neu5Gc. Front Immunol. 2019;10:807. doi: 10.3389/fimmu.2019.00807 31057542
4. Altmann MO, Gagneux P. Absence of Neu5Gc and Presence of Anti-Neu5Gc Antibodies in Humans—An Evolutionary Perspective. Frontiers Immunol. 2019;10:789.
5. Yamamoto F, Cid E, Yamamoto M, Blancher A. ABO research in the modern era of genomics. Transf Med Rev. 2012;26:103–18.
6. Springer GF, Horton RE. Blood group isoantibody stimulation in man by feeding blood-group active bacteria. J Clin Invest. 1969;48:1280–91. doi: 10.1172/JCI106094 4893685
7. Oriol R, Mollicone R, Couillin P, Dalix AM, Candelier JJ. Genetic regulation of the expression of ABH and Lewis antigens in tissues. APMIS. 1992;100, Supp 27:28–38.
8. Buonomano R, Tinguely C, Rieben R, Mohacsi PJ, Nydegger UE. Quantitation and characterization of anti-Galalpha1-3Gal antibodies in sera of 200 healthy persons. Xenotransplantation. 1999;6:173–80. doi: 10.1034/j.1399-3089.1999.00023.x 10503783
9. Xu Y, Lee J-G, Yan J-J, Ryu J-H, Xu S, Yang J. Human B1 Cells are the Main Blood Group A-Specific B Cells That Have a Moderate Correlation With Anti-A Antibody Titer. Ann Lab Med. 2020;40:48–56.
10. Walls AC, Xiong X, Park Y-J, Tortorici MA, Snijder J, Quispe J, et al. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell. 2019;176:1026–39. doi: 10.1016/j.cell.2018.12.028 30712865
11. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiol. 2020;https://doi.org/10.1038/s41564-020-0688-y.
12. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–737. doi: 10.1002/path.1570 15141377
13. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020;http://dx.doi.org/10.1101/2020.01.26.919985.
14. Guillon P, Clément M, Sébille V, Rivain J-G, Chou C-F, Ruvoën-Clouet N, et al. Inhibition of the interaction beteen the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology. 2008;18:1085–93. doi: 10.1093/glycob/cwn093 18818423
15. Cheng Y, Cheng G, Chui CH, Lau FY. ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA. 2005;293:1450–1.
16. Zhao J, Yang Y, Huang H-P, Li D, Gu D-F, Lu X-F, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptib. medRxiv. 2020. https://doi.org/10.1101/2020.03.11.20031096.
17. Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic Distribution of CMP-Neu5Ac Hydroxylase (CMAH), the Enzyme Synthetizing the Proinflammatory Human Xenoantigen Neu5Gc. Genome Biol Evol. 2018;10:207–19. doi: 10.1093/gbe/evx251 29206915
18. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–3. doi: 10.1126/science.abb2507 32075877
19. Posekany KJ, Pittman HK, Bradfield JF, Haisch CE, Verbanac KM. Induction of cytolytic anti-gal antibodies in α-1,3-galactosyltransferase gene knockout mice by oral inoculation with Escherichia coli O86:B7 bacteria. Infect Immun. 2002;70:6215–22. doi: 10.1128/IAI.70.11.6215-6222.2002 12379700
20. Sianturi J, Manabe Y, Li H-S, Chiu L-T, Chang T-C, Tokunaga K, et al. Development of a-Gal–Antibody Conjugates to Increase Immune Response by Recruiting Natural Antibodies. Angew Chem Int Ed 2019;58:4526–30.
21. Samraj AN, Pearce OMT, Läubli H, Crittenden AN, Bergfeld AK, Banda K, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci. 2015;112:542–7. doi: 10.1073/pnas.1417508112 25548184
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 5
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- The hallmarks of COVID-19 disease
- Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii
- Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells
- Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2