Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies
Autoři:
Ludmila Perelygina aff001; Min-hsin Chen aff001; Suganthi Suppiah aff001; Adebola Adebayo aff001; Emily Abernathy aff001; Morna Dorsey aff002; Lionel Bercovitch aff003; Kenneth Paris aff004; Kevin P. White aff005; Alfons Krol aff005; Julie Dhossche aff005; Ivan Y. Torshin aff006; Natalie Saini aff007; Leszek J. Klimczak aff008; Dmitry A. Gordenin aff007; Andrey Zharkikh aff009; Stanley Plotkin aff010; Kathleen E. Sullivan aff011; Joseph Icenogle aff001
Působiště autorů:
Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
aff001; Department of Pediatrics, University of California, San Francisco, California, United States of America
aff002; Department of Dermatology, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
aff003; Division of Allergy and Immunology, Children's Hospital New Orleans, New Orleans, Louisiana, United States of America
aff004; Department of Dermatology, Oregon Health & Science University, Portland, Oregon, United States of America
aff005; Institute of Pharmacoinformatics, Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Dorodnicyn Computing Center, Moscow, Russian Federation
aff006; Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States of America
aff007; Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States of America
aff008; Myriad Genetics, Inc., Salt Lake City, Utah, United States of America
aff009; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
aff010; Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
aff011
Vyšlo v časopise:
Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog 15(10): e32767. doi:10.1371/journal.ppat.1008080
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008080
Souhrn
Rubella viruses (RV) have been found in an association with granulomas in children with primary immune deficiencies (PID). Here, we report the recovery and characterization of infectious immunodeficiency-related vaccine-derived rubella viruses (iVDRV) from diagnostic skin biopsies of four patients. Sequence evolution within PID hosts was studied by comparison of the complete genomic sequences of the iVDRVs with the genome of the vaccine virus RA27/3. The degree of divergence of each iVDRV correlated with the duration of persistence indicating continuous intrahost evolution. The evolution rates for synonymous and nonsynonymous substitutions were estimated to be 5.7 x 10−3 subs/site/year and 8.9 x 10−4 subs/site/year, respectively. Mutational spectra and signatures indicated a major role for APOBEC cytidine deaminases and a secondary role for ADAR adenosine deaminases in generating diversity of iVDRVs. The distributions of mutations across the genes and 3D hotspots for amino acid substitutions in the E1 glycoprotein identified regions that may be under positive selective pressure. Quasispecies diversity was higher in granulomas than in recovered infectious iVDRVs. Growth properties of iVDRVs were assessed in WI-38 fibroblast cultures. None of the iVDRV isolates showed complete reversion to wild type phenotype but the replicative and persistence characteristics of iVDRVs were different from those of the RA27/3 vaccine strain, making predictions of iVDRV transmissibility and teratogenicity difficult. However, detection of iVDRV RNA in nasopharyngeal specimen and poor neutralization of some iVDRV strains by sera from vaccinated persons suggests possible public health risks associated with iVDRV carriers. Detection of IgM antibody to RV in sera of two out of three patients may be a marker of virus persistence, potentially useful for identifying patients with iVDRV before development of lesions. Studies of the evolutionary dynamics of iVDRV during persistence will contribute to development of infection control strategies and antiviral therapies.
Klíčová slova:
Antibodies – Granulomas – MMR vaccine – Substitution mutation – Viral genomics – Viral persistence and latency – Rubella virus – Rubella
Zdroje
1. Approved proposal. Animal ssRNA+ viruses. 2018.013S.R.Matonaviridae 2019. Available from: https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/animal-ssrna-viruses/8087.
2. Rawls WE. Viral persistence in congenital rubella. Prog Med Virol. 1974;18:273–88. 4608455
3. Lambert N, Strebel P, Orenstein W, Icenogle J, Poland GA. Rubella. Lancet. 2015 Jan 7. doi: 10.1016/S0140-6736(14)60539-0 25576992.
4. Sherman FE, Michaels RH, Kenny FM. Acute encephalopathy (encephalitis) complicating rubella. Report of cases with virologic studies, cortisol-production determinations, and observations at autopsy. JAMA. 1965 May 24;192:675–81. doi: 10.1001/jama.1965.03080210019005 14280514.
5. Kreps EO, Derveaux T, De Keyser F, Kestelyn P. Fuchs' uveitis syndrome: no longer a syndrome? Ocul Iammunol and Inflamm. 2015 Jul 29:1–10. doi: 10.3109/09273948.2015.1005239 PubMed PMID: 26222767.
6. Plotkin SA. The history of rubella and rubella vaccination leading to elimination. Clin Infect Dis. 2006 Nov 1;43 Suppl 3:S164–8. doi: 10.1086/505950 16998777.
7. Grant GB, Reef SE, Patel M, Knapp JK, Dabbagh A. Progress in rubella and congenital rubella syndrome control and elimination—Worldwide, 2000–2016. MMWR Morb Mortal Wkly Rep. 2017 Nov 17;66(45):1256–60. doi: 10.15585/mmwr.mm6645a4 29145358. Pubmed Central PMCID: PMC5726242.
8. Tingle AJ, Mitchell LA, Grace M, Middleton P, Mathias R, MacWilliam L, et al. Randomised double-blind placebo-controlled study on adverse effects of rubella immunisation in seronegative women. Lancet. 1997 May 3;349(9061):1277–81. doi: 10.1016/S0140-6736(96)12031-6 9142061.
9. Islam SM, El-Sheikh HF, Tabbara KF. Anterior uveitis following combined vaccination for measles, mumps and rubella (MMR): a report of two cases. Acta Ophthalmol Scand. 2000 Oct;78(5):590–2. doi: 10.1034/j.1600-0420.2000.078005590.x 11037921.
10. Plotkin S, Reef S, Cooper L, Alford CA. Rubella. In: J. R, Klein J, Wilson C, Nizet V, Maldonato Y, editors. Infectious diseases of the fetus and newborn infant. Philadelphia, PA: Elsveier; 2011. p. 861–98.
11. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018 Jan;38(1):96–128. doi: 10.1007/s10875-017-0464-9 29226302. Pubmed Central PMCID: PMC5742601.
12. Shearer WT, Fleisher TA, Buckley RH, Ballas Z, Ballow M, Blaese RM, et al. Recommendations for live viral and bacterial vaccines in immunodeficient patients and their close contacts. J Allergy Clin Immunol. 2014 Apr;133(4):961–6. doi: 10.1016/j.jaci.2013.11.043 24582311. Pubmed Central PMCID: PMC4009347.
13. Eibl MM, Wolf HM. Vaccination in patients with primary immune deficiency, secondary immune deficiency and autoimmunity with immune regulatory abnormalities. Immunotherapy. 2015;7(12):1273–92. doi: 10.2217/IMT.15.74 26289364.
14. Nanda A, Al-Herz W, Al-Sabah H, Al-Ajmi H. Noninfectious cutaneous granulomas in primary immunodeficiency disorders: report from a national registry. Am J Dermatopathol. 2014 Oct;36(10):832–7. doi: 10.1097/DAD.0000000000000112 25062261.
15. Leung J, Sullivan KE, Perelygina L, Icenogle JP, Fuleihan RL, Lanzieri TM. Prevalence of granulomas in patients with primary immunodeficiency disorders, United States: Data From national health care claims and the US Immunodeficiency Network Registry. J Clin Immunol. 2018 Aug;38(6):717–26. doi: 10.1007/s10875-018-0534-7 30043271. Pubmed Central PMCID: PMC6155465.
16. Bodemer C, Sauvage V, Mahlaoui N, Cheval J, Couderc T, Leclerc-Mercier S, et al. Live rubella virus vaccine long-term persistence as an antigenic trigger of cutaneous granulomas in patients with primary immunodeficiency. Clin Microbiol Infect. 2014 Jan 30;20(10):O656–63. doi: 10.1111/1469-0691.12573 24476349.
17. Perelygina L, Plotkin S, Russo P, Hautala T, Bonilla F, Ochs HD, et al. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. J Allergy Clin Immunol. 2016 Nov;138(5):1436–9 e11. doi: 10.1016/j.jaci.2016.06.030 27613149. Pubmed Central PMCID: PMC5392721.
18. Neven B, Perot P, Bruneau J, Pasquet M, Ramirez M, Diana JS, et al. Cutaneous and visceral chronic granulomatous disease triggered by a rubella virus vaccine strain in children with primary immunodeficiencies. Clin Infect Dis. 2017 Jan 01;64(1):83–6. doi: 10.1093/cid/ciw675 27810866.
19. Buchbinder D, Hauck F, Albert MH, Rack A, Bakhtiar S, Shcherbina A, et al. Rubella virus-associated cutaneous granulomatous disease: a unique complication in immune-deficient patients, not limited to DNA repair disorders. J Clin Immunol. 2019 Jan 3. doi: 10.1007/s10875-018-0581-0 30607663.
20. Plotkin SA, Farquhar JD, Katz M, Buser F. Attenuation of RA 27–3 rubella virus in WI-38 human diploid cells. Am J Dis Child. 1969;118(2):178–85. doi: 10.1001/archpedi.1969.02100040180004 5794813
21. Perelygina L, Adebayo A, Metcalfe M, Icenogle J. Differences in establishment of persistence of vaccine and wild type rubella viruses in fetal endothelial cells. PLoS One. 2015;10(7):e0133267. doi: 10.1371/journal.pone.0133267 26177032.
22. Gonzales JA, Hinterwirth A, Shantha J, Wang K, Zhong L, Cummings SL, et al. Association of ocular inflammation and rubella virus persistence. JAMA Ophthalmol. 2018 Dec 27. doi: 10.1001/jamaophthalmol.2018.6185 30589932.
23. Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000 Dec 1;15(12):496–503. doi: 10.1016/s0169-5347(00)01994-7 11114436.
24. Echave J, Spielman SJ, Wilke CO. Causes of evolutionary rate variation among protein sites. Nat Rev Genet. 2016 Feb;17(2):109–21. doi: 10.1038/nrg.2015.18 26781812. Pubmed Central PMCID: PMC4724262.
25. Liu Z, Yang D, Qiu Z, Lim KT, Chong P, Gillam S. Identification of domains in rubella virus genomic RNA and capsid protein necessary for specific interaction. J Virol. 1996 Apr;70(4):2184–90. PubMed 8642641. Pubmed Central PMCID: 190057.
26. Chen MH, Icenogle JP. Rubella virus capsid protein modulates viral genome replication and virus infectivity. J Virol. 2004 Apr;78(8):4314–22. doi: 10.1128/JVI.78.8.4314-4322.2004 15047844. Pubmed Central PMCID: 374250.
27. Ilkow CS, Goping IS, Hobman TC. The rubella virus capsid as an anti-apoptotic protein that attenuates the pore-forming ability of Bax. PLoS Pathog. 2011;7(2):e1001291. doi: 10.1371/journal.ppat.1001291 21379337
28. Petit V, Guetard D, Renard M, Keriel A, Sitbon M, Wain-Hobson S, et al. Murine APOBEC1 is a powerful mutator of retroviral and cellular RNA in vitro and in vivo. J Mol Biol. 2009 Jan 9;385(1):65–78. doi: 10.1016/j.jmb.2008.10.043 18983852.
29. Harris RS, Dudley JP. APOBECs and virus restriction. Virology. 2015 May;479-480(0):131–45. doi: 10.1016/j.virol.2015.03.012 25818029. Pubmed Central PMCID: PMC4424171.
30. Tomaselli S, Galeano F, Locatelli F, Gallo A. ADARs and the balance game between virus infection and innate immune cell response. Curr Issues Mol Biol. 2015;17:37–51. PubMed 25502818.
31. Refsland EW, Harris RS. The APOBEC3 family of retroelement restriction factors. Curr Top Microbiol Immunol. 2013;371:1–27. doi: 10.1007/978-3-642-37765-5_1 23686230. Pubmed Central PMCID: PMC3934647.
32. Niavarani A, Currie E, Reyal Y, Anjos-Afonso F, Horswell S, Griessinger E, et al. APOBEC3A is implicated in a novel class of G-to-A mRNA editing in WT1 transcripts. PLoS One. 2015;10(3):e0120089. doi: 10.1371/journal.pone.0120089 25807502. Pubmed Central PMCID: 4373805.
33. Sharma S, Patnaik SK, Taggart RT, Kannisto ED, Enriquez SM, Gollnick P, et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun. 2015 Apr 21;6:6881. doi: 10.1038/ncomms7881 25898173. Pubmed Central PMCID: PMC4411297.
34. Sharma S, Patnaik SK, Taggart RT, Baysal BE. The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme. Sci Rep. 2016 Dec 15;6:39100. doi: 10.1038/srep39100 27974822. Pubmed Central PMCID: PMC5156925.
35. Prohaska KM, Bennett RP, Salter JD, Smith HC. The multifaceted roles of RNA binding in APOBEC cytidine deaminase functions. Wiley Interdiscip Rev RNA. 2014 Jul-Aug;5(4):493–508. doi: 10.1002/wrna.1226 24664896. Pubmed Central PMCID: PMC4062598.
36. Lada AG, Krick CF, Kozmin SG, Mayorov VI, Karpova TS, Rogozin IB, et al. Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mosc). 2011 Jan;76(1):131–46. doi: 10.1134/s0006297911010135 21568845. Pubmed Central PMCID: PMC3906858.
37. Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, Malc EP, et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015 Sep;47(9):1067–72. doi: 10.1038/ng.3378 26258849. Pubmed Central PMCID: PMC4594173.
38. Yang D, Hwang D, Qiu Z, Gillam S. Effects of mutations in the rubella virus E1 glycoprotein on E1-E2 interaction and membrane fusion activity. J Virol. 1998 Nov;72(11):8747–55. PubMed 9765418. Pubmed Central PMCID: 110290.
39. Cong H, Jiang Y, Tien P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J Virol. 2011 Nov;85(21):11038–47. doi: 10.1128/JVI.05398-11 21880773. Pubmed Central PMCID: 3194935.
40. Ho-Terry L, Terry GM, Cohen A, Londesborough P. Immunological characterisation of the rubella E 1 glycoprotein. Brief report. Arch Virol. 1986;90(1–2):145–52. doi: 10.1007/bf01314152 2425779.
41. Chaye HH, Mauracher CA, Tingle AJ, Gillam S. Cellular and humoral immune responses to rubella virus structural proteins E1, E2, and C. J Clin Microbiol. 1992 Sep;30(9):2323–9. PubMed 1383269. Pubmed Central PMCID: 265500.
42. Wolinsky JS, McCarthy M, Allen-Cannady O, Moore WT, Jin R, Cao SN, et al. Monoclonal antibody-defined epitope map of expressed rubella virus protein domains. J Virol. 1991;65(8):3986–94. 1712855
43. Green KY, Dorsett PH. Rubella virus antigens: localization of epitopes involved in hemagglutination and neutralization by using monoclonal antibodies. J Virol. 1986;57(3):893–8. 2419590
44. Lovett AE, Hahn CS, Rice CM, Frey TK, Wolinsky JS. Rubella virus-specific cytotoxic T-lymphocyte responses: identification of the capsid as a target of major histocompatibility complex class I-restricted lysis and definition of two epitopes. J Virol. 1993 Oct;67(10):5849–58. PubMed 7690412. Pubmed Central PMCID: 238003.
45. Ou D, Mitchell LA, Decarie D, Gillam S, Tingle AJ. Characterization of an overlapping CD8+ and CD4+ T-cell epitope on rubella capsid protein. Virology. 1997 Sep 1;235(2):286–92. doi: 10.1006/viro.1997.8704 9281508.
46. DuBois RM, Vaney MC, Tortorici MA, Kurdi RA, Barba-Spaeth G, Krey T, et al. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature. 2013 Jan 24;493(7433):552–6. doi: 10.1038/nature11741 23292515.
47. Plotkin SA, Buser F. History of RA27/3 rubella vaccine. Rev Infect Dis. 1985 Mar-Apr;7 Suppl 1:S77–8. doi: 10.1093/clinids/7.supplement_1.s77 3890107.
48. Perelygina L, Zheng Q, Metcalfe M, Icenogle J. Persistent infection of human fetal endothelial cells with rubella virus. PLoS One. 2013;8(8):e73014. doi: 10.1371/journal.pone.0073014 23940821. Pubmed Central PMCID: 3734309.
49. Seagle EE, Bednarczyk RA, Hill T, Fiebelkorn AP, Hickman CJ, Icenogle JP, et al. Measles, mumps, and rubella antibody patterns of persistence and rate of decline following the second dose of the MMR vaccine. Vaccine. 2018 Feb 1;36(6):818–26. doi: 10.1016/j.vaccine.2017.12.075 29317117.
50. Miki NP, Chantler JK. Differential ability of wild-type and vaccine strains of rubella virus to replicate and persist in human joint tissue. Clin Exp Rheumatol. 1992 Jan-Feb;10(1):3–12. PubMed 1551276.
51. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet. 2008 Apr;9(4):267–76. doi: 10.1038/nrg2323 18319742.
52. Zhu Z, Chen MH, Abernathy E, Icenogle J, Zhou S, Wang C, et al. Analysis of complete genomes of the rubella virus genotypes 1E and 2B which circulated in China, 2000–2013. Sci Rep. 2016 Dec 13;6:39025. doi: 10.1038/srep39025 27959338. Pubmed Central PMCID: PMC5154293.
53. Domingo E, Baranowski E, Ruiz-Jarabo CM, Martin-Hernandez AM, Saiz JC, Escarmis C. Quasispecies structure and persistence of RNA viruses. Emerg Infect Dis. 1998 Oct-Dec;4(4):521–7. doi: 10.3201/eid0404.980402 9866728. Pubmed Central PMCID: PMC2640251.
54. Farci P, Shimoda A, Coiana A, Diaz G, Peddis G, Melpolder JC, et al. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science. 2000 Apr 14;288(5464):339–44. doi: 10.1126/science.288.5464.339 10764648.
55. Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiology and molecular biology reviews: MMBR. 2012 Jun;76(2):159–216. doi: 10.1128/MMBR.05023-11 22688811. Pubmed Central PMCID: PMC3372249.
56. Lemey P, Rambaut A, Pybus OG. HIV evolutionary dynamics within and among hosts. AIDS Rev. 2006 Jul-Sep;8(3):125–40. PubMed 17078483.
57. Raghwani J, Rose R, Sheridan I, Lemey P, Suchard MA, Santantonio T, et al. Exceptional heterogeneity in viral evolutionary dynamics characterises chronic hepatitis C virus infection. PLoS Pathog. 2016 Sep;12(9):e1005894. doi: 10.1371/journal.ppat.1005894 27631086. Pubmed Central PMCID: PMC5025083.
58. Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM, Malim MH. Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol. 2009 Sep;83(18):9474–85. doi: 10.1128/JVI.01089-09 19587057. Pubmed Central PMCID: PMC2738220.
59. Liu Y, Ma T, Liu J, Zhao X, Cheng Z, Guo H, et al. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA. J Matern Fetal Neonatal Med. 2015;28(17):2096–9. doi: 10.3109/14767058.2014.979147 25330844.
60. Fehrholz M, Kendl S, Prifert C, Weissbrich B, Lemon K, Rennick L, et al. The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses. J Gen Virol. 2012 Mar;93(Pt 3):565–76. doi: 10.1099/vir.0.038919-0 22170635.
61. Milewska A, Kindler E, Vkovski P, Zeglen S, Ochman M, Thiel V, et al. APOBEC3-mediated restriction of RNA virus replication. Sci Rep. 2018 Apr 13;8(1):5960. doi: 10.1038/s41598-018-24448-2 29654310. Pubmed Central PMCID: PMC5899082.
62. Abernathy E, Chen MH, Bera J, Shrivastava S, Kirkness E, Zheng Q, et al. Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961–2009. Virol J. 2013 Jan 25;10(1):32. doi: 10.1186/1743-422X-10-32 23351667.
63. Schiff GM, Sever JL, Huebner RJ. Rubella virus: neutralizing antibody in commercial gamma globulin. Science. 1963 Oct 4;142(3588):58–60. doi: 10.1126/science.142.3588.58 14057354.
64. Quiroga JA, van Binsbergen J, Wang CY, Pardo M, Navas S, Trines C, et al. Immunoglobulin M antibody to hepatitis C virus core antigen: correlations with viral replication, histological activity, and liver disease outcome. Hepatology. 1995 Dec;22(6):1635–40. PubMed 7489967.
65. Wherry EJ. T cell exhaustion. Nat Immunol. 2011 Jun;12(6):492–9. PubMed 21739672.
66. Aghamohammadi A, Abolhassani H, Kutukculer N, Wassilak SG, Pallansch MA, Kluglein S, et al. Patients with primary immunodeficiencies are a reservoir of poliovirus and a risk to polio eradication. Front Immunol. 2017;8:685. doi: 10.3389/fimmu.2017.00685 28952612. Pubmed Central PMCID: PMC5468416.
67. Memoli MJ, Athota R, Reed S, Czajkowski L, Bristol T, Proudfoot K, et al. The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts. Clin Infect Dis. 2014 Jan;58(2):214–24. doi: 10.1093/cid/cit725 24186906. Pubmed Central PMCID: PMC3871797.
68. Xue KS, Stevens-Ayers T, Campbell AP, Englund JA, Pergam SA, Boeckh M, et al. Parallel evolution of influenza across multiple spatiotemporal scales. Elife. 2017 Jun 27;6. doi: 10.7554/eLife.26875 28653624. Pubmed Central PMCID: PMC5487208.
69. Dhossche J, Johnson L, White K, Funk T, Leitenberger S, Perelygina L, et al. Cutaneous Granulomatous Disease With Presence of Rubella Virus in Lesions. JAMA Dermatol. 2019 Jun 5. doi: 10.1001/jamadermatol.2019.0814 31166586.
70. Perelygina L, Buchbinder D, Dorsey MJ, Eloit M, Hauck F, Hautala T, et al. Outcomes for nitazoxanide treatment in a case series of patients with primary immunodeficiencies and rubella virus-associated granuloma. J Clin Immunol. 2019 Jan 24. doi: 10.1007/s10875-019-0589-0 30680653.
71. Abernathy E, Cabezas C, Sun H, Zheng Q, Chen MH, Castillo-Solorzano C, et al. Confirmation of rubella within 4 days of rash onset: comparison of rubella virus RNA detection in oral fluid with immunoglobulin M detection in serum or oral fluid. J Clin Microbiol. 2009 Jan;47(1):182–8. doi: 10.1128/JCM.01231-08 19005151.
72. Namuwulya P, Abernathy E, Bukenya H, Bwogi J, Tushabe P, Birungi M, et al. Phylogenetic analysis of rubella viruses identified in Uganda, 2003–2012. J Med Virol. 2014 Apr 4. doi: 10.1002/jmv.23935 24700073.
73. Chen MH, Zhu Z, Zhang Y, Favors S, Xu WB, Featherstone DA, et al. An indirect immunocolorimetric assay to detect rubella virus infected cells. J Virol Methods. 2007 Dec;146(1–2):414–8. doi: 10.1016/j.jviromet.2007.08.021 17919742.
74. Rota JS, Rosen JB, Doll MK, McNall RJ, McGrew M, Williams N, et al. Comparison of the sensitivity of laboratory diagnostic methods from a well-characterized outbreak of mumps in New York city in 2009. Clin Vaccine Immunol. 2013 Mar;20(3):391–6. doi: 10.1128/CVI.00660-12 23324519. Pubmed Central PMCID: PMC3592341.
75. Hummel KB, Erdman DD, Heath J, Bellini WJ. Baculovirus expression of the nucleoprotein gene of measles virus and utility of the recombinant protein in diagnostic enzyme immunoassays. J Clin Microbiol. 1992 Nov;30(11):2874–80. PubMed 1452657. Pubmed Central PMCID: PMC270545.
76. Hummel KB, Lowe L, Bellini WJ, Rota PA. Development of quantitative gene-specific real-time RT-PCR assays for the detection of measles virus in clinical specimens. J Virol Methods. 2006 Mar;132(1–2):166–73. doi: 10.1016/j.jviromet.2005.10.006 16274752.
77. Standardization of the nomenclature for genetic characteristics of wild-type rubella viruses. Wkly Epidemiol Rec. 2005 Apr 8;80(14):126–32. PubMed 15850226.
78. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. doi: 10.1093/nar/gkh340 15034147. Pubmed Central PMCID: PMC390337.
79. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016 Jul;33(7):1870–4. doi: 10.1093/molbev/msw054 27004904.
80. Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–26. doi: 10.1093/oxfordjournals.molbev.a040410 3444411.
81. Korber B. HIV signature and sequence variation analysis. In: Rodrigo AG, Learn GH, editors. Computational analysis of HIV molecular sequences. Dordrecht, Netherlands: Kluwer Academic Publishers; 2000. p. 55–72.
82. Jukes K, CAntor C. Evolution of protein molecules. In: Munro H, editor. Mammalian Protein Metabolism. New York: Academic Press; 1969. p. 21–132.
83. Torshin IY. Computed energetics of nucleotides in spatial ribozyme structures: an accurate identification of functional regions from structure. ScientificWorldJournal. 2004 Mar 26;4:228–47. doi: 10.1100/tsw.2004.19 15105962. Pubmed Central PMCID: PMC5956427.
84. Patrusheva I, Perelygina L, Torshin I, LeCher J, Hilliard J. B virus (Macacine Herpesvirus 1) divergence: variations in glycoprotein D from clinical and laboratory isolates diversify virus entry strategies. J Virol. 2016 Oct 15;90(20):9420–32. doi: 10.1128/JVI.00799-16 27512063.
85. Eggington JM, Greene T, Bass BL. Predicting sites of ADAR editing in double-stranded RNA. Nat Commun. 2011;2:319. doi: 10.1038/ncomms1324 21587236. Pubmed Central PMCID: PMC3113232.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 10
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Alterations in cellular expression in EBV infected epithelial cell lines and tumors
- Correction: A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes
- Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer
- Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling