Antibody and cellular responses to HIV vaccine regimens with DNA plasmid as compared with ALVAC priming: An analysis of two randomized controlled trials
Autoři:
Zoe Moodie aff001; Stephen R. Walsh aff002; Fatima Laher aff005; Lucas Maganga aff006; Michael E. Herce aff007; Sarita Naidoo aff008; Mina C. Hosseinipour aff009; Craig Innes aff010; Linda-Gail Bekker aff011; Nicole Grunenberg aff001; Philipp Mann aff001; Chenchen Yu aff001; Allan C. deCamp aff001; Maurine D. Miner aff001; Nicole L. Yates aff012; Jack Heptinstall aff012; Nonhlanhla N. Mkhize aff013; One Dintwe aff001; Nicole Frahm aff001; Kristen W. Cohen aff001; Mary Allen aff015; Julia Hutter aff015; Ralf Wagner aff016; Giuseppe Pantaleo aff017; M. Juliana McElrath aff001; Georgia D. Tomaras aff012; Lynn Morris aff013; David C. Montefiori aff012; Erica Andersen-Nissen aff001; Glenda E. Gray aff018; Peter B. Gilbert aff001; James G. Kublin aff001;
Působiště autorů:
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
aff001; Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
aff002; Harvard Medical School, Boston, Massachusetts, United States of America
aff003; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
aff004; Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
aff005; NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
aff006; University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
aff007; HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
aff008; UNC Project Malawi, Lilongwe, Malawi
aff009; Aurum Institute, Klerksdorp, South Africa
aff010; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
aff011; Duke Human Vaccine Institute, Department of Surgery Duke University, Durham, North Carolina, United States of America
aff012; National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
aff013; Cape Town HVTN Immunology Laboratory, Hutchinson Center Research Institute of South Africa, Cape Town, South Africa
aff014; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland United States of America
aff015; Institute of Medical Microbiology and Hygiene, University of Regensberg, Regensberg, Germany
aff016; Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
aff017; South African Medical Research Council, Cape Town, South Africa
aff018
Vyšlo v časopise:
Antibody and cellular responses to HIV vaccine regimens with DNA plasmid as compared with ALVAC priming: An analysis of two randomized controlled trials. PLoS Med 17(5): e32767. doi:10.1371/journal.pmed.1003117
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003117
Souhrn
Background
DNA plasmids promise a pragmatic alternative to viral vectors for prime-boost HIV-1 vaccines. We evaluated DNA plasmid versus canarypox virus (ALVAC) primes in 2 randomized, double-blind, placebo-controlled trials in southern Africa with harmonized trial designs. HIV Vaccine Trials Network (HVTN) 111 tested DNA plasmid prime by needle or needleless injection device (Biojector) and DNA plasmid plus gp120 protein plus MF59 adjuvant boost. HVTN 100 tested ALVAC prime and ALVAC plus gp120 protein plus MF59 adjuvant boost (same protein/adjuvant as HVTN 111) by needle.
Methods and findings
The primary endpoints for this analysis were binding antibody (bAb) responses to HIV antigens (gp120 from strains ZM96, 1086, and TV1; variable 1 and 2 [V1V2] regions of gp120 from strains TV1, 1086, and B.CaseA, as 1086 V1V2 and B.CaseA were correlates of risk in the RV144 efficacy trial), neutralizing antibody (nAb) responses to pseudoviruses TV1c8.2 and MW925.26, and cellular responses to vaccine-matched antigens (envelope [Env] from strains ZM96, 1086, and TV1; and Gag from strains LAI and ZM96) at month 6.5, two weeks after the fourth vaccination. Per-protocol cohorts included vaccine recipients from HVTN 100 (n = 186, 60% male, median age 23 years) enrolled between February 9, 2015, and May 26, 2015 and from HVTN 111 (n = 56, 48% male, median age 24 years) enrolled between June 21, 2016, and July 13, 2017. IgG bAb response rates were 100% to 3 Env gp120 antigens in both trials. Response rates to V1V2 were lower and similar in both trials except to vaccine-matched 1086 V1V2, with rates significantly higher for the DNA-primed regimen than the ALVAC-primed regimen: 96.6% versus 72.7% (difference = 23.9%, 95% CI 15.6%–32.2%, p < 0.001). Among positive responders, bAb net mean fluorescence intensity (MFI) was significantly higher with the DNA-primed regimen than ALVAC-primed for 1086 V1V2 (geometric mean [GM] 2,833.3 versus 1,200.9; ratio = 2.36, 95% CI 1.42–3.92, p < 0.001) and B.CaseA V1V2 (GM 2314.0 versus 744.6, ratio = 3.11, 95% CI 1.51–6.38, p = 0.002). nAb response rates were >98% in both trials, with significantly higher 50% inhibitory dilution (ID50) among DNA-primed positive responders (n = 53) versus ALVAC-primed (n = 182) to tier 1A MW965.26 (GM 577.7 versus 265.7, ratio = 2.17, 95% CI 1.67–2.83, p < 0.001) and to TV1c8.2 (GM 187.3 versus 100.4, ratio = 1.87, 95% CI 1.48–2.35, p < 0.001). CD4+ T-cell response rates were significantly higher with DNA plasmid prime via Biojector than ALVAC prime (91.4% versus 52.8%, difference = 38.6%, 95% CI 20.5%–56.6%, p < 0.001 for ZM96.C; 88.0% versus 43.1%, difference = 44.9%, 95% CI 26.7%–63.1%, p < 0.001 for 1086.C; 55.5% versus 2.2%, difference = 53.3%, 95% CI 23.9%–82.7%, p < 0.001 for Gag LAI/ZM96). The study’s main limitations include the nonrandomized comparison of vaccines from 2 different trials, the lack of data on immune responses to other non–vaccine-matched antigens, and the uncertain clinical significance of the observed immunological effects.
Conclusions
In this study, we found that further investigation of DNA/protein regimens is warranted given enhanced immunogenicity to the V1V2 correlates of decreased HIV-1 acquisition risk identified in RV144, the only HIV vaccine trial to date to show any efficacy.
Klíčová slova:
Antibodies – Antibody response – Antigens – HIV vaccines – Immune response – Plasmid construction – T cells – Vaccines
Zdroje
1. UNAIDS. Global AIDS Update 2018: Miles to Go. Geneva, Switzerland: UNAIDS, 2018.
2. Day TA, Kublin JG. Lessons learned from HIV vaccine clinical efficacy trials. Curr HIV Res. 2013;11(6):441–9. doi: 10.2174/1570162x113116660051 24033299
3. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361(23):2209–20. doi: 10.1056/NEJMoa0908492 19843557.
4. Robb ML, Rerks-Ngarm S, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Kunasol P, et al. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect Dis. 2012;12(7):531–7. doi: 10.1016/S1473-3099(12)70088-9 22652344
5. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012;366(14):1275–86. doi: 10.1056/NEJMoa1113425 22475592
6. Russell ND, Marovich MA. Pox-Protein Public Private Partnership program and upcoming HIV vaccine efficacy trials. Curr Opin HIV AIDS. 2016;11(6):614–9. doi: 10.1097/COH.0000000000000322 27636503.
7. Mor G, Eliza M. Plasmid DNA vaccines. Immunology, tolerance, and autoimmunity. Mol Biotechnol. 2001;19(3):245–50. doi: 10.1385/MB:19:3:245 11721621.
8. Graham BS, Koup RA, Roederer M, Bailer RT, Enama ME, Moodie Z, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis. 2006;194(12):1650–60. doi: 10.1086/509259 17109336
9. Boyer JD, Cohen AD, Vogt S, Schumann K, Nath B, Ahn L, et al. Vaccination of seronegative volunteers with a human immunodeficiency virus type 1 env/rev DNA vaccine induces antigen-specific proliferation and lymphocyte production of beta-chemokines. J Infect Dis. 2000;181(2):476–83. doi: 10.1086/315229 10669329.
10. MacGregor RR, Boyer JD, Ciccarelli RB, Ginsberg RS, Weiner DB. Safety and immune responses to a DNA-based human immunodeficiency virus (HIV) type I env/rev vaccine in HIV-infected recipients: follow-up data. J Infect Dis. 2000;181(1):406. doi: 10.1086/315199 10608800.
11. MacGregor RR, Ginsberg R, Ugen KE, Baine Y, Kang CU, Tu XM, et al. T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. AIDS. 2002;16(16):2137–43. doi: 10.1097/00002030-200211080-00005 12409734.
12. Chea LS, Amara RR. Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Rev Vaccines. 2017;16(10):973–85. doi: 10.1080/14760584.2017.1371594 28838267
13. Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: current progress. Clin Infect Dis. 2011;53(3):296–302. Epub 2011/07/19. doi: 10.1093/cid/cir334 21765081
14. Buchbinder SP, Grunenberg NA, Sanchez BJ, Seaton KE, Ferrari G, Moody MA, et al. Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults. PLoS ONE. 2017;12(7):e0179597. doi: 10.1371/journal.pone.0179597 28727817
15. Goepfert PA, Elizaga ML, Sato A, Qin L, Cardinali M, Hay CM, et al. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis. 2011;203(5):610–9. doi: 10.1093/infdis/jiq105 21282192
16. Goepfert PA, Elizaga ML, Seaton K, Tomaras GD, Montefiori DC, Sato A, et al. Specificity and 6-month durability of immune responses induced by DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis. 2014;210(1):99–110. doi: 10.1093/infdis/jiu003 24403557
17. Churchyard GJ, Morgan C, Adams E, Hural J, Graham BS, Moodie Z, et al. A phase IIA randomized clinical trial of a multiclade HIV-1 DNA prime followed by a multiclade rAd5 HIV-1 vaccine boost in healthy adults (HVTN204). PLoS ONE. 2011;6(8):e21225. doi: 10.1371/journal.pone.0021225 21857901
18. Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ, Grove D, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med. 2013;369(22):2083–92. doi: 10.1056/NEJMoa1310566 24099601
19. Johnson JA, Barouch DH, Baden LR. Nonreplicating vectors in HIV vaccines. Curr Opin HIV AIDS. 2013;8(5):412–20. doi: 10.1097/COH.0b013e328363d3b7 23925001
20. Walsh SR, Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines. 2011;10(8):1221–40. doi: 10.1586/erv.11.79 21854314
21. Barouch DH, Tomaka FL, Wegmann F, Stieh DJ, Alter G, Robb ML, et al. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13–19). Lancet. 2018;392(10143):232–43. doi: 10.1016/S0140-6736(18)31364-3 30047376
22. Bekker LG, Moodie Z, Grunenberg N, Laher F, Tomaras GD, Cohen KW, et al. Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial. Lancet HIV. 2018;5(7):e366–e78. doi: 10.1016/S2352-3018(18)30071-7 29898870
23. Graham BS, Enama ME, Nason MC, Gordon IJ, Peel SA, Ledgerwood JE, et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS ONE. 2013;8(4):e59340. doi: 10.1371/journal.pone.0059340 23577062
24. Jin X, Morgan C, Yu X, DeRosa S, Tomaras GD, Montefiori DC, et al. Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine. 2015;33(20):2347–53. doi: 10.1016/j.vaccine.2015.03.036 25820067
25. Hosseinipour MC, Innes C, Naidoo S, Mann P, Hutter J, Ramjee G, et al. Phase 1 HIV vaccine trial to evaluate the safety and immunogenicity of HIV subtype C DNA and MF59-adjuvanted subtype C Env protein. Clin Infect Dis. 2020. Epub 2020/01/05. doi: 10.1093/cid/ciz1239 31900486.
26. Horton H, Thomas EP, Stucky JA, Frank I, Moodie Z, Huang Y, et al. Optimization and validation of an 8-color intracellular cytokine staining (ICS) assay to quantify antigen-specific T cells induced by vaccination. J Immunol Methods. 2007;323(1):39–54. doi: 10.1016/j.jim.2007.03.002 17451739
27. Sarzotti-Kelsoe M, Bailer RT, Turk E, Lin CL, Bilska M, Greene KM, et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods. 2014;409:131–46. doi: 10.1016/j.jim.2013.11.022 24291345
28. Tomaras GD, Yates NL, Liu P, Qin L, Fouda GG, Chavez LL, et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol. 2008;82(24):12449–63. doi: 10.1128/JVI.01708-08 18842730
29. Chung AW, Kumar MP, Arnold KB, Yu WH, Schoen MK, Dunphy LJ, et al. Dissecting Polyclonal Vaccine-Induced Humoral Immunity against HIV Using Systems Serology. Cell. 2015;163(4):988–98. doi: 10.1016/j.cell.2015.10.027 26544943
30. Seaman MS, Janes H, Hawkins N, Grandpre LE, Devoy C, Giri A, et al. Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. J Virol. 2010;84(3):1439–52. doi: 10.1128/JVI.02108-09 19939925
31. Gray GE, Allen M, Moodie Z, Churchyard G, Bekker LG, Nchabeleng M, et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect Dis. 2011;11(7):507–15. doi: 10.1016/S1473-3099(11)70098-6 21570355
32. Huang Y, Gilbert PB, Montefiori DC, Self SG. Simultaneous Evaluation of the Magnitude and Breadth of a Left and Right Censored Multivariate Response, with Application to HIV Vaccine Development. Stat Biopharm Res. 2009;1(1):81–91. doi: 10.1198/sbr.2009.0008 20072667
33. Moncunill G, Dobano C, McElrath MJ, De Rosa SC. OMIP-025: evaluation of human T- and NK-cell responses including memory and follicular helper phenotype by intracellular cytokine staining. Cytometry A. 2015;87(4):289–92. doi: 10.1002/cyto.a.22590 25407958
34. Benkeser D, Carone M, Laan MJV, Gilbert PB. Doubly robust nonparametric inference on the average treatment effect. Biometrika. 2017;104(4):863–80. Epub 2018/02/13. doi: 10.1093/biomet/asx053 29430041
35. Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel). 2014;2(2):354–79. doi: 10.3390/vaccines2020354 26344623
36. Bockl K, Wild J, Bredl S, Kindsmuller K, Kostler J, Wagner R. Altering an artificial Gagpolnef polyprotein and mode of ENV co-administration affects the immunogenicity of a clade C HIV DNA vaccine. PLoS ONE. 2012;7(4):e34723. doi: 10.1371/journal.pone.0034723 22509350
37. Keefer MC, Graham BS, Belshe RB, Schwartz D, Corey L, Bolognesi DP, et al. Studies of high doses of a human immunodeficiency virus type 1 recombinant glycoprotein 160 candidate vaccine in HIV type 1-seronegative humans. The AIDS Vaccine Clinical Trials Network. AIDS Res Hum Retroviruses. 1994;10(12):1713–23. doi: 10.1089/aid.1994.10.1713 7888231.
38. DiazGranados CA, Dunning AJ, Kimmel M, Kirby D, Treanor J, Collins A, et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N Engl J Med. 2014;371(7):635–45. doi: 10.1056/NEJMoa1315727 25119609.
39. Piroth L, Launay O, Michel ML, Bourredjem A, Miailhes P, Ajana F, et al. Vaccination Against Hepatitis B Virus (HBV) in HIV-1-Infected Patients With Isolated Anti-HBV Core Antibody: The ANRS HB EP03 CISOVAC Prospective Study. J Infect Dis. 2016;213(11):1735–42. doi: 10.1093/infdis/jiw011 26768256.
40. Rouphael NG, Morgan C, Li SS, Jensen R, Sanchez B, Karuna S, et al. DNA priming and gp120 boosting induces HIV-specific antibodies in a randomized clinical trial. J Clin Invest. 2019;129(11):4769–4785. doi: 10.1172/JCI128699 31566579.
41. Perreau M, Pantaleo G, Kremer EJ. Activation of a dendritic cell-T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. J Exp Med. 2008;205(12):2717–25. doi: 10.1084/jem.20081786 18981239
42. Mehendale S, Thakar M, Sahay S, Kumar M, Shete A, Sathyamurthi P, et al. Safety and immunogenicity of DNA and MVA HIV-1 subtype C vaccine prime-boost regimens: a phase I randomised Trial in HIV-uninfected Indian volunteers. PLoS ONE. 2013;8(2):e55831. Epub 2013/02/19. doi: 10.1371/journal.pone.0055831 23418465
43. Churchyard G, Mlisana K, Karuna S, Williamson AL, Williamson C, Morris L, et al. Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants. PLoS ONE. 2016;11(9):e0161753. Epub 2016/09/02. doi: 10.1371/journal.pone.0161753 27583368
44. Liao HX, Sutherland LL, Xia SM, Brock ME, Scearce RM, Vanleeuwen S, et al. A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology. 2006;353(2):268–82. doi: 10.1016/j.virol.2006.04.043 17039602
45. Li F, Malhotra U, Gilbert PB, Hawkins NR, Duerr AC, McElrath JM, et al. Peptide selection for human immunodeficiency virus type 1 CTL-based vaccine evaluation. Vaccine. 2006;24(47–48):6893–904. doi: 10.1016/j.vaccine.2006.06.009 16890329.
46. Fischer W, Perkins S, Theiler J, Bhattacharya T, Yusim K, Funkhouser R, et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat Med. 2007;13(1):100–6. doi: 10.1038/nm1461 17187074.
47. Hu X, Lu Z, Valentin A, Rosati M, Broderick KE, Sardesai NY, et al. Gag and env conserved element CE DNA vaccines elicit broad cytotoxic T cell responses targeting subdominant epitopes of HIV and SIV Able to recognize virus-infected cells in macaques. Hum Vaccin Immunother. 2018;14(9):2163–77. doi: 10.1080/21645515.2018.1489949 29939820
48. Gao F, Liao HX, Hahn BH, Letvin NL, Korber BT, Haynes BF. Centralized HIV-1 envelope immunogens and neutralizing antibodies. Curr HIV Res. 2007;5(6):572–7. doi: 10.2174/157016207782418498 18045113.
49. Sanders RW, Moore JP. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol Rev. 2017;275(1):161–82. doi: 10.1111/imr.12481 28133806
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 5
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- „Jednohubky“ z klinického výzkumu – 2024/44
- Je libo čepici místo mozkového implantátu?
Nejčtenější v tomto čísle
- National and regional prevalence of posttraumatic stress disorder in sub-Saharan Africa: A systematic review and meta-analysis
- Risk of severe maternal morbidity or death in relation to elevated hemoglobin A1c preconception, and in early pregnancy: A population-based cohort study
- Antibody-based therapies for COVID-19: Can Europe move faster?
- The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study