Pulmonary vascular dysfunction among people aged over 65 years in the community in the Atherosclerosis Risk In Communities (ARIC) Study: A cross-sectional analysis
Autoři:
Kanako Teramoto aff001; Mário Santos aff001; Brian Claggett aff001; Jenine E. John aff001; Scott D. Solomon aff001; Dalane Kitzman aff005; Aaron R. Folsom aff006; Mary Cushman aff007; Kunihiro Matsushita aff009; Hicham Skali aff001; Amil M. Shah aff001
Působiště autorů:
Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
aff001; Division of Cardiology, St. Marianna University School of Medicine Hospital, Kawasaki, Japan
aff002; Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Unit, Faculty of Medicine, University of Porto, Portugal
aff003; Department of Cardiology, Hospital Santo António, Porto Hospital Center, Porto, Portugal
aff004; Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
aff005; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
aff006; Department of Medicine, University of Vermont, Burlington, Vermont, United States of America
aff007; Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
aff008; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
aff009
Vyšlo v časopise:
Pulmonary vascular dysfunction among people aged over 65 years in the community in the Atherosclerosis Risk In Communities (ARIC) Study: A cross-sectional analysis. PLoS Med 17(10): e32767. doi:10.1371/journal.pmed.1003361
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003361
Souhrn
Background
Heart failure (HF) risk is highest in late life, and impaired pulmonary vascular function is a risk factor for HF development. However, data regarding the contributors to and prognostic importance of pulmonary vascular dysfunction among HF-free elders in the community are limited and largely restricted to pulmonary hypertension. Our objective was to define the prevalence and correlates of abnormal pulmonary pressure, resistance, and compliance and their association with incident HF and HF phenotype (left ventricular [LV] ejection fraction [LVEF] ≥ or < 50%) independent of LV structure and function.
Methods and findings
We performed cross-sectional and time-to-event analyses in a prospective epidemiologic cohort study, the Atherosclerosis Risk in Communities study. This is an ongoing, observational study that recruited 15,792 persons aged 45–64 years between 1987 and 1989 (visit 1) from four representative communities in the United States: Minneapolis, Minnesota; Jackson, Mississippi; Hagerstown, Maryland; and Forsyth County, North Carolina. The current analysis included 2,810 individuals aged 66–90 years, free of HF, who underwent echocardiography at the fifth study visit (June 8, 2011, to August 28, 2013) and had measurable tricuspid regurgitation by spectral Doppler. Echocardiography-derived pulmonary artery systolic pressure (PASP), pulmonary vascular resistance (PVR), and pulmonary arterial compliance (PAC) were measured. The main outcome was incident HF after visit 5, and key secondary end points were incident HF with preserved LVEF (HFpEF) and incident HF with reduced LVEF (HFrEF). The mean ± SD age was 76 ± 5 years, 66% were female, and 21% were black. Mean values of PASP, PVR, and PAC were 28 ± 5 mm Hg, 1.7 ± 0.4 Wood unit, and 3.4 ± 1.0 mL/mm Hg, respectively, and were abnormal in 18%, 12%, and 14%, respectively, using limits defined from the 10th and 90th percentile limits in 253 low-risk participants free of cardiovascular disease or risk factors. Left heart dysfunction was associated with abnormal PASP and PAC, whereas a restrictive ventilatory deficit was associated with abnormalities of PASP, PVR, and PAC. PASP, PVR, and PAC were each predictive of incident HF or death (hazard ratio per SD 1.3 [95% CI 1.1–1.4], p < 0.001; 1.1 [1.0–1.2], p = 0.04; 1.2 [1.1–1.4], p = 0.001, respectively) independent of LV measures. Elevated pulmonary pressure was predictive of incident HFpEF (HFpEF: 2.4 [1.4–4.0, p = 0.001]) but not HFrEF (1.4 [0.8–2.5, p = 0.31]). Abnormal PAC predicted HFrEF (HFpEF: 2.0 [1.0–4.0, p = 0.05], HFrEF: 2.8 [1.4–5.5, p = 0.003]), whereas abnormal PVR was not predictive of either (HFpEF: 0.9 [0.4–2.0, p = 0.85], HFrEF: 0.7 [0.3–1.4, p = 0.30],). A greater number of abnormal pulmonary vascular measures was associated with greater risk of incident HF. Major limitations include the use of echo Doppler to estimate pulmonary hemodynamic measures, which may lead to misclassification; inclusions bias related to detectable tricuspid regurgitation, which may limit generalizability of our findings; and survivor bias related to the cohort age, which may result in underestimation of the described associations.
Conclusions
In this study, we observed abnormalities of PASP, PVR, and PAC in 12%–18% of elders in the community. Higher PASP and lower PAC were independently predictive of incident HF. Abnormally high PASP predicted incident HFpEF but not HFrEF. These findings suggest that impairments in pulmonary vascular function may precede clinical HF and that a comprehensive pulmonary hemodynamic evaluation may identify pulmonary vascular phenotypes that differentially predict HF phenotypes.
Klíčová slova:
Cardiovascular disease risk – Ejection fraction – Heart – Heart failure – Hemodynamics – Pulmonary arteries – Systolic pressure – Venous thromboembolism
Zdroje
1. Maron BA, Hess E, Maddox TM, Opotowsky AR, Tedford RJ, Lahm T, et al. Association of Borderline Pulmonary Hypertension With Mortality and Hospitalization in a Large Patient Cohort: Insights From the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation. 2016;133(13):1240–1248. doi: 10.1161/CIRCULATIONAHA.115.020207 26873944
2. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (APEC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119. doi: 10.1093/eurheartj/ehv317 26320113
3. Naeije R. Physiology of the pulmonary circulation and the right heart. Curr Hypertens Rep. 2013;15(6):623–631. doi: 10.1007/s11906-013-0396-6 24097187
4. Fayyaz AU, Edwards WD, Maleszewski JJ, Konik EA, DuBrock HM, Borlaug BA, et al. Global Pulmonary Vascular Remodeling in Pulmonary Hypertension Associated With Heart Failure and Preserved or Reduced Ejection Fraction. Circulation. 2017;137(17):1796–1810. doi: 10.1161/CIRCULATIONAHA.117.031608 29246894
5. Pellegrini P, Rossi A, Pasotti M, Raineri C, Cicoira M, Bonapace S, et al. Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest. 2014;145(5):1064–1070. doi: 10.1378/chest.13-1510 24356904
6. Mackay EH, Banks J, Sykes B, Lee G. Structural basis for the changing physical properties of human pulmonary vessels with age. Thorax. 1978;33(3):335–344. doi: 10.1136/thx.33.3.335 684670
7. Lam CS, Borlaug BA, Kane GC, Enders FT, Rodeheffer RJ, Redfield MM. Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation. 2009;119(20):2663–2670. doi: 10.1161/CIRCULATIONAHA.108.838698 19433755
8. Shah AM, Claggett B, Kitzman D, Biering-Sørensen T, Jensen JS, Cheng S, et al. Contemporary Assessment of Left Ventricular Diastolic Function in Older Adults: The atherosclerosis risk in communities study. Circulation. 2017;135(5):426–439. doi: 10.1161/CIRCULATIONAHA.116.024825 27927714
9. AlGhatrif M, Lakatta EG. The conundrum of arterial stiffness, elevated blood pressure, and aging. Curr Hypertens Rep. 2015;17(2):12. doi: 10.1007/s11906-014-0523-z 25687599
10. D'Alto M, Romeo E, Argiento P, D'Andrea A, Vanderpool R, Correra A, et al. Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int J Cardiol. 2013;168(4):4058–4062. doi: 10.1016/j.ijcard.2013.07.005 23890907
11. van Riel AC, Opotowsky AR, Santos M, Rivero JM, Dhimitri A, Mulder BJ, et al. Accuracy of Echocardiography to Estimate Pulmonary Artery Pressures With Exercise: A Simultaneous Invasive-Noninvasive Comparison. Circ Cardiovasc Imaging. 2017 Apr;10. pii: e005711. doi: 10.1161/CIRCIMAGING.116.005711 28360262
12. The atherosclerosis risk in communities (aric) study: Design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129(4):687–702. 2646917
13. Loehr LR, Rosamond WD, Chang PP, Folsom AR, Chambless LE. Heart failure incidence and survival (from the atherosclerosis risk in communities study). Am J Cardiol. 2008;101(7):1016–1022. doi: 10.1016/j.amjcard.2007.11.061 18359324
14. Rosamond WD, Chang PP, Baggett C, Johnson A, Bertoni AG, Shahar E, et al. Classification of heart failure in the Atherosclerosis Risk in Communities (ARIC) study: A comparison of diagnostic criteria. Circ Heart Fail. 2012;5(2):152–159. doi: 10.1161/CIRCHEARTFAILURE.111.963199 22271752
15. Shah AM, Cheng S, Skali H, Wu J, Mangion JR, Kitzman D, et al. Rationale and design of a multicenter echocardiographic study to assess the relationship between cardiac structure and function and heart failure risk in a biracial cohort of community-dwelling elderly persons: The Atherosclerosis Risk in Communities study. Circ Cardiovasc Imaging. 2014;7(1):173–181. doi: 10.1161/CIRCIMAGING.113.000736 24214885
16. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–270. doi: 10.1093/ehjci/jev014 25712077
17. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–1360. doi: 10.1093/ehjci/jew082 27422899
18. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70(4):657–662. doi: 10.1161/01.cir.70.4.657 6478568
19. Currie PJ, Seward JB, Chan KL, Fyfe DA, Hagler DJ, Mair DD, et al. Continuous wave Doppler determination of right ventricular pressure: A simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol. 1985;6(4):750–756. doi: 10.1016/s0735-1097(85)80477-0 4031289
20. Aduen JF, Castello R, Lozano MM, Hepler GN, Keller CA, Alvarez F, et al. An alternative echocardiographic method to estimate mean pulmonary artery pressure: Diagnostic and clinical implications. J Am Soc Echocardiogr. 2009;22(7):814–819. doi: 10.1016/j.echo.2009.04.007 19505794
21. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A Simple Method for Noninvasive Estimation of Pulmonary Vascular Resistance. J Am Coll Cardiol. 2003;41(6):1021–1027. doi: 10.1016/s0735-1097(02)02973-x 12651052
22. Lankhaar JW, Westerhof N, Faes TJ, Gan CT, Marques KM, Boonstra A, et al. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J. 2008;29(13):1688–1695. doi: 10.1093/eurheartj/ehn103 18349027
23. Marini JJ. Respiratory Medicine. 2nd ed. Baltimore: Williams & Wilkins; 1997. p.141.
24. Ruppel G. Manual of Pulmonary Function Testing. 5th ed. St Louis: CV Mosby; 1991. p.18.
25. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. doi: 10.1164/rccm.201204-0596PP 22878278
26. Cushman M, Tsai AW, White RH, Heckbert SR, Rosamond WD, Enright P, et al. Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. Am J Med. 2004;117(1):19–25. doi: 10.1016/j.amjmed.2004.01.018 15210384
27. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006 19414839
28. White AD, Folsom AR, Chambless LE, Sharret AR, Yang K, Conwill D, et al. Community surveillance of coronary heart disease in the atherosclerosis risk in communities (aric) study: Methods and initial two years' experience. J Clin Epidemiol. 1996;49(2):223–233. doi: 10.1016/0895-4356(95)00041-0 8606324
29. Alonso A, Agarwal SK, Soliman EZ, Ambrose M, Chamberlain AM, Prineas RJ, et al. Incidence of atrial fibrillation in whites and African-Americans: the Atherosclerosis Risk in Communities (aric) study. Am Heart J. 2009;158(1):111–7. doi: 10.1016/j.ahj.2009.05.010 19540400
30. Rudski LG1, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713; quiz 786–688. doi: 10.1016/j.echo.2010.05.010 20620859
31. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities study. Circulation. 2011;123(13):1367–1376. doi: 10.1161/CIRCULATIONAHA.110.005264 21422391
32. Seeger W, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D109–116. doi: 10.1016/j.jacc.2013.10.036 24355635
33. Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am J Public Health. 1998;88(1):15–19. doi: 10.2105/ajph.88.1.15 9584027
34. Weuve J, Tchetgen Tchetgen EJ, Glymour MM, Beck TL, Aggarwal NT, Wilson RS, et al. Accounting for bias due to selective attrition: The example of smoking and cognitive decline. Epidemiology. 2012;23(1):119–128. doi: 10.1097/EDE.0b013e318230e861 21989136
35. Gottesman RF, Rawlings AM, Sharrett AR, Albert M, Alonso A, Bandeen-Roche K, et al. Impact of differential attrition on the association of education with cognitive change over 20 years of follow-up: The ARIC neurocognitive study. Am J Epidemiol. 2014;179(8):956–966. doi: 10.1093/aje/kwu020 24627572
36. Vanderpool RR, Saul M, Nouraie M, Gladwin MT, Simon MA. Association Between Hemodynamic Markers of Pulmonary Hypertension and Outcomes in Heart Failure With Preserved Ejection Fraction. JAMA Cardiol. 2018;3(4):298–306. doi: 10.1001/jamacardio.2018.0128 29541759
37. Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–1126. doi: 10.1016/j.jacc.2008.11.051 19324256
38. D'Andrea A, Naeije R, Grünig E, Caso P, D'Alto M, Di Palma E, et al. Echocardiography of the pulmonary circulation and right ventricular function: exploring the physiologic spectrum in 1,480 normal subjects. Chest. 2014;145(5):1071–1078. doi: 10.1378/chest.12-3079 24306729
39. Grossman A, Prokupetz A, Benderly M, Wand O, Assa A, Kalter-Leibovici O. Pulmonary artery pressure in young healthy subjects. J Am Soc Echocardiogr. 2012;25(3):357–360. doi: 10.1016/j.echo.2011.11.022 22192333
40. McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 2001;104(23):2797–2802. doi: 10.1161/hc4801.100076 11733397
41. Hoeper MM, Simon RGJ. The changing landscape of pulmonary arterial hypertension and implications for patient care. Eur Respir Rev. 2014;23(134):450–457. doi: 10.1183/09059180.00007814 25445943
42. Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, et al. Right ventricular function in heart failure with preserved ejection fraction: A community-based study. Circulation. 2014;130(25):2310–2320. doi: 10.1161/CIRCULATIONAHA.113.008461 25391518
43. Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD, Thiemann DR, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125(2):289–97. doi: 10.1161/CIRCULATIONAHA.111.051540 22131357
44. Masri SC, Tedford RJ, Colvin MM, Leary PJ, Cogswell R. Pulmonary arterial compliance improves rapidly after left ventricular assist device implantation. ASAIO J. 2017;63(2):139–143. doi: 10.1097/MAT.0000000000000467 27831997
45. Saouti N, Westerhof N, Helderman F, Marcus JT, Stergiopulos N, Westerhof BE, et al. RC time constant of single lung equals that of both lungs together: A study in chronic thromboembolic pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2009;297(6):H2154–2160. doi: 10.1152/ajpheart.00694.2009 19801491
46. Lalande S, Yerly P, Faoro V, Naeije R. Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. J Physiol. 2012;590(17):4279–4288. doi: 10.1113/jphysiol.2012.234310 22733662
47. Lankhaar JW, Westerhof N, Faes TJ, Marques KM, Marcus JT, Postmus PE, et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2006;291(4):H1731–1737. doi: 10.1152/ajpheart.00336.2006 16699074
48. Mannino DM, Ford ES, Redd SC. Obstructive and restrictive lung disease and functional limitation: Data from the third national health and nutrition examination. J Intern Med. 2003;254(6):540–547. doi: 10.1111/j.1365-2796.2003.01211.x 14641794
49. Lam CS, Lyass A, Kraigher-Krainer E, Massaro JM, Lee DS, Ho JE, et al. Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community. Circulation. 2011;124(1):24–30. doi: 10.1161/CIRCULATIONAHA.110.979203 21670229
50. Ende-Verhaar YM, Cannegieter SC, Vonk Noordegraaf A, Delcroix M, Pruszczyk P, Mairuhu AT, et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: a contemporary view of the published literature. Eur Respir J. 2017;49(2). pii: 1601792. doi: 10.1183/13993003.01792-2016 28232411
51. Choudhary G, Jankowich M, Wu WC. Elevated pulmonary artery systolic pressure predicts heart failure admissions in African Americans: Jackson Heart Study. Circ Heart Fail. 2014;7(4):558–564. doi: 10.1161/CIRCHEARTFAILURE.114.001366 24902739
52. Cappola TP, Felker GM, Kao WH, Hare JM, Baughman KL, Kasper EK. Pulmonary hypertension and risk of death in cardiomyopathy: Patients with myocarditis are at higher risk. Circulation. 2002;105(14):1663–1668. doi: 10.1161/01.cir.0000013771.30198.82 11940544
53. Dragu R, Rispler S, Habib M, Sholy H, Hammerman H, Galie N, et al. Pulmonary arterial capacitance in patients with heart failure and reactive pulmonary hypertension. Eur J Heart Fail. 2015;17(1):74–80. doi: 10.1002/ejhf.192 25388783
54. Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10(3):407–418. doi: 10.1016/j.hfc.2014.04.008 24975905
55. Shah SJ, Katz DH, Selvaraj S, Burke MA2 Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–279. doi: 10.1161/CIRCULATIONAHA.114.010637 25398313
56. Parikh KS, Sharma K, Fiuzat M, Surks HK, George JT, Honarpour N6, et al. Heart Failure With Preserved Ejection Fraction Expert Panel Report: Current Controversies and Implications for Clinical Trials. JACC Heart Fail. 2018;6(8):619–632. doi: 10.1016/j.jchf.2018.06.008 30071950
57. Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179(7):615–621. doi: 10.1164/rccm.200811-1691OC 19164700
58. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–968. doi: 10.1183/09031936.05.00035205 16264058
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 10
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- Association of technologically assisted integrated care with clinical outcomes in type 2 diabetes in Hong Kong using the prospective JADE Program: A retrospective cohort analysis
- Correction: Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest–posttest comparison group study
- The impact of continuous quality improvement on coverage of antenatal HIV care tests in rural South Africa: Results of a stepped-wedge cluster-randomised controlled implementation trial
- Variation in racial/ethnic disparities in COVID-19 mortality by age in the United States: A cross-sectional study