Association between prehospital time and outcome of trauma patients in 4 Asian countries: A cross-national, multicenter cohort study
Autoři:
Chi-Hsin Chen aff001; Sang Do Shin aff002; Jen-Tang Sun aff003; Sabariah Faizah Jamaluddin aff004; Hideharu Tanaka aff005; Kyoung Jun Song aff002; Kentaro Kajino aff006; Akio Kimura aff007; Edward Pei-Chuan Huang aff001; Ming-Ju Hsieh aff008; Matthew Huei-Ming Ma aff008; Wen-Chu Chiang aff008
Působiště autorů:
Department of Emergency Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan
aff001; Department of Emergency Medicine, Seoul National University College of Medicine and Hospital, Seoul, Korea
aff002; Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
aff003; Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Malaysia
aff004; Graduate School of Emergency Medical Service System, Kokushikan University, Tokyo, Japan
aff005; Traumatology and Critical Care Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
aff006; Department of Emergency Medicine and Critical Care, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
aff007; Department of Emergency Medicine, National Taiwan University Hospital, Taipei City, Taiwan
aff008; Department of Emergency Medicine, National Taiwan University Hospital Yun-Lin Branch, Douliu City, Taiwan
aff009
Vyšlo v časopise:
Association between prehospital time and outcome of trauma patients in 4 Asian countries: A cross-national, multicenter cohort study. PLoS Med 17(10): e32767. doi:10.1371/journal.pmed.1003360
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003360
Souhrn
Background
Whether rapid transportation can benefit patients with trauma remains controversial. We determined the association between prehospital time and outcome to explore the concept of the “golden hour” for injured patients.
Methods and findings
We conducted a retrospective cohort study of trauma patients transported from the scene to hospitals by emergency medical service (EMS) from January 1, 2016, to November 30, 2018, using data from the Pan-Asia Trauma Outcomes Study (PATOS) database. Prehospital time intervals were categorized into response time (RT), scene to hospital time (SH), and total prehospital time (TPT). The outcomes were 30-day mortality and functional status at hospital discharge. Multivariable logistic regression was used to investigate the association of prehospital time and outcomes to adjust for factors including age, sex, mechanism and type of injury, Injury Severity Score (ISS), Revised Trauma Score (RTS), and prehospital interventions. Overall, 24,365 patients from 4 countries (645 patients from Japan, 16,476 patients from Korea, 5,358 patients from Malaysia, and 1,886 patients from Taiwan) were included in the analysis. Among included patients, the median age was 45 years (lower quartile [Q1]–upper quartile [Q3]: 25–62), and 15,498 (63.6%) patients were male. Median (Q1–Q3) RT, SH, and TPT were 20 (Q1–Q3: 12–39), 21 (Q1–Q3: 16–29), and 47 (Q1–Q3: 32–60) minutes, respectively. In all, 280 patients (1.1%) died within 30 days after injury. Prehospital time intervals were not associated with 30-day mortality. The adjusted odds ratios (aORs) per 10 minutes of RT, SH, and TPT were 0.99 (95% CI 0.92–1.06, p = 0.740), 1.08 (95% CI 1.00–1.17, p = 0.065), and 1.03 (95% CI 0.98–1.09, p = 0.236), respectively. However, long prehospital time was detrimental to functional survival. The aORs of RT, SH, and TPT per 10-minute delay were 1.06 (95% CI 1.04–1.08, p < 0.001), 1.05 (95% CI 1.01–1.08, p = 0.007), and 1.06 (95% CI 1.04–1.08, p < 0.001), respectively. The key limitation of our study is the missing data inherent to the retrospective design. Another major limitation is the aggregate nature of the data from different countries and unaccounted confounders such as in-hospital management.
Conclusions
Longer prehospital time was not associated with an increased risk of 30-day mortality, but it may be associated with increased risk of poor functional outcomes in injured patients. This finding supports the concept of the “golden hour” for trauma patients during prehospital care in the countries studied.
Klíčová slova:
Asia – Cohort studies – Critical care and emergency medicine – Resuscitation – Transportation – Traumatic brain injury – Traumatic injury – Traumatic injury risk factors
Zdroje
1. Haagsma JA, Graetz N, Bolliger I, Naghavi M, Higashi H, Mullany EC, et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013. Inj Prev. 2016;22(1):3–18. doi: 10.1136/injuryprev-2015-041616 26635210
2. Benjet C, Bromet E, Karam EG, Kessler RC, McLaughlin KA, Ruscio AM, et al. The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium. Psychol Med. 2016;46(2):327–43. doi: 10.1017/S0033291715001981 26511595
3. Williamson K, Ramesh R, Grabinsky A. Advances in prehospital trauma care. Int J Crit Illn Inj Sci. 2011;1(1):44–50. doi: 10.4103/2229-5151.79281 22096773
4. Hedges JR, Feero S, Moore B, Shultz B, Haver DW. Factors contributing to paramedic onscene time during evaluation and management of blunt trauma. American J Emerg Med. 1988;6(5):443–8. doi: 10.1016/0735-6757(88)90242-2
5. Rogers FB, Rittenhouse KJ, Gross BW. The golden hour in trauma: dogma or medical folklore? Injury. 2015;46(4):525–7. doi: 10.1016/j.injury.2014.08.043 25262329
6. Cowley RA. A total emergency medical system for the State of Maryland. Md State Med J. 1975;24(7):37–45. 1142842
7. Newgard CD, Schmicker RH, Hedges JR, Trickett JP, Davis DP, Bulger EM, et al. Emergency medical services intervals and survival in trauma: assessment of the “golden hour” in a North American prospective cohort. Ann Emerg Med. 2010;55(3):235–46.e4. doi: 10.1016/j.annemergmed.2009.07.024 19783323
8. Petri RW, Dyer A, Lumpkin J. The effect of prehospital transport time on the mortality from traumatic injury. Prehosp Disaster Med. 1995;10(1):24–9. doi: 10.1017/s1049023x00041625 10155402
9. Baez AA, Lane PL, Sorondo B, Giraldez EM. Predictive effect of out-of-hospital time in outcomes of severely injured young adult and elderly patients. Prehosp Disaster Med. 2006;21(6):427–30. doi: 10.1017/s1049023x00004143 17334190
10. Dinh MM, Bein K, Roncal S, Byrne CM, Petchell J, Brennan J. Redefining the golden hour for severe head injury in an urban setting: the effect of prehospital arrival times on patient outcomes. Injury. 2013;44(5):606–10. doi: 10.1016/j.injury.2012.01.011 22336130
11. McCoy CE, Menchine M, Sampson S, Anderson C, Kahn C. Emergency medical services out-of-hospital scene and transport times and their association with mortality in trauma patients presenting to an urban Level I trauma center. Ann Emerg Med. 2013;61(2):167–74. doi: 10.1016/j.annemergmed.2012.08.026 23142007
12. Swaroop M, Straus DC, Agubuzu O, Esposito TJ, Schermer CR, Crandall ML. Pre-hospital transport times and survival for hypotensive patients with penetrating thoracic trauma. J Emerg Trauma Shock. 2013;6(1):16–20. doi: 10.4103/0974-2700.106320 23494152
13. Funder KS, Petersen JA, Steinmetz J. On-scene time and outcome after penetrating trauma: an observational study. Emerg Med J. 2011;28(9):797–801. doi: 10.1136/emj.2010.097535 20935332
14. Harmsen AM, Giannakopoulos GF, Moerbeek PR, Jansma EP, Bonjer HJ, Bloemers FW. The influence of prehospital time on trauma patients outcome: a systematic review. Injury. 2015;46(4):602–9. doi: 10.1016/j.injury.2015.01.008 25627482
15. Dharap SB, Kamath S, Kumar V. Does prehospital time affect survival of major trauma patients where there is no prehospital care? J Postgrad Med. 2017;63(3):169–75. doi: 10.4103/0022-3859.201417 28272069
16. Choi SJ, Oh MY, Kim NR, Jung YJ, Ro YS, Shin SD. Comparison of trauma care systems in Asian countries: a systematic literature review. Emerg Med Australas. 2017;29(6):697–711. doi: 10.1111/1742-6723.12840 28782875
17. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4(10):e296. doi: 10.1371/journal.pmed.0040296 17941714
18. Kong SY, Shin SD, Tanaka H, Kimura A, Song KJ, Shaun GE, et al. Pan-Asian Trauma Outcomes Study (PATOS): rationale and methodology of an international and multicenter trauma registry. Prehosp Emerg Care. 2018;22(1):58–83. doi: 10.1080/10903127.2017.1347224 28792281
19. Sun KM, Song KJ, Shin SD, Tanaka H, Shaun GE, Chiang WC, et al. Comparison of emergency medical services and trauma care systems among pan-Asian countries: an international, multicenter, population-based survey. Prehosp Emerg Care. 2017;21(2):242–51. doi: 10.1080/10903127.2016.1241325 27918864
20. Campbell-Furtick M, Moore BJ, Overton TL, Laureano Phillips J, Simon KJ, Gandhi RR, et al. Post-trauma mortality increase at age 60: a cutoff for defining elderly? Am J Surg. 2016;212(4):781–5. doi: 10.1016/j.amjsurg.2015.12.018 27038794
21. Baker SP, O’Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14(3):187–96. 4814394
22. Champion HR, Sacco WJ, Copes WS, Gann DS, Gennarelli TA, Flanagan ME. A revision of the Trauma Score. J Trauma. 1989;29(5):623–9. doi: 10.1097/00005373-198905000-00017 2657085
23. Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. J Trauma. 1987;27(4):370–8. 3106646
24. Huang YT, Huang YH, Hsieh CH, Li CJ, Chiu IM. Comparison of Injury Severity Score, Glasgow Coma Scale, and Revised Trauma Score in predicting the mortality and prolonged ICU stay of traumatic young children: a cross-sectional retrospective study. Emerg Med Int. 2019;2019:5453624. doi: 10.1155/2019/5453624 31885926
25. Jeong JH, Park YJ, Kim DH, Kim TY, Kang C, Lee SH, et al. The new trauma score (NTS): a modification of the revised trauma score for better trauma mortality prediction. BMC Surg. 2017;17(1):77. doi: 10.1186/s12893-017-0272-4 28673278
26. Ringdal KG, Coats TJ, Lefering R, Di Bartolomeo S, Steen PA, Roise O, et al. The Utstein template for uniform reporting of data following major trauma: a joint revision by SCANTEM, TARN, DGU-TR and RITG. Scand J Trauma Resusc Emerg Med. 2008;16:7. doi: 10.1186/1757-7241-16-7 18957069
27. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19(5):604–7. doi: 10.1161/01.str.19.5.604 3363593
28. Nyam TE, Ao KH, Hung SY, Shen ML, Yu TC, Kuo JR. FOUR score predicts early outcome in patients after traumatic brain injury. Neurocrit Care. 2017;26(2):225–31. doi: 10.1007/s12028-016-0326-y 27873233
29. Sadaka F, Patel D, Lakshmanan R. The FOUR score predicts outcome in patients after traumatic brain injury. Neurocrit Care. 2012;16(1):95–101. doi: 10.1007/s12028-011-9617-5 21845490
30. Momenyan S, Mousavi SM, Dadkhahtehrani T, Sarvi F, Heidarifar R, Kabiri F, et al. Predictive validity and inter-rater reliability of the Persian version of full outline of unresponsiveness among unconscious patients with traumatic brain injury in an intensive care unit. Neurocrit Care. 2017;27(2):229–36. doi: 10.1007/s12028-016-0324-0 28054286
31. Kohli A, Chao E, Spielman D, Sugano D, Srivastava A, Dayama A, et al. Factors associated with return to work postinjury: can the modified Rankin Scale be used to predict return to work? Am Surg. 2016;82(2):95–101. 26874129
32. Rangaraju S, Haussen D, Nogueira RG, Nahab F, Frankel M. Comparison of 3-month stroke disability and quality of life across Modified Rankin Scale categories. Interv Neurol. 2017;6(1–2):36–41. doi: 10.1159/000452634 28611832
33. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. 3rd edition. Hoboken (NJ): Wiley; 2013. 500 p.
34. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–38. doi: 10.1097/EDE.0b013e3181c30fb2 20010215
35. Tu JV, Austin PC, Walld R, Roos L, Agras J, McDonald KM. Development and validation of the Ontario acute myocardial infarction mortality prediction rules. J Am Coll Cardiol. 2001;37(4):992–7. doi: 10.1016/s0735-1097(01)01109-3 11263626
36. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5. doi: 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3 15405679
37. Skaga NO, Eken T, Jones JM, Steen PA. Different definitions of patient outcome: consequences for performance analysis in trauma. Injury. 2008;39(5):612–22. doi: 10.1016/j.injury.2007.11.426 18377909
38. Lerner EB, Billittier AJ, Dorn JM, Wu YW. Is total out-of-hospital time a significant predictor of trauma patient mortality? Acad Emerg Med. 2003;10(9):949–54. doi: 10.1111/j.1553-2712.2003.tb00650.x 12957978
39. Feero S, Hedges JR, Simmons E, Irwin L. Does out-of-hospital EMS time affect trauma survival? Am J Emerg Med. 1995;13(2):133–5. doi: 10.1016/0735-6757(95)90078-0 7893293
40. Tien HC, Jung V, Pinto R, Mainprize T, Scales DC, Rizoli SB. Reducing time-to-treatment decreases mortality of trauma patients with acute subdural hematoma. Ann Surg. 2011;253(6):1178–83. doi: 10.1097/SLA.0b013e318217e339 21494125
41. Kidher E, Krasopoulos G, Coats T, Charitou A, Magee P, Uppal R, et al. The effect of prehospital time related variables on mortality following severe thoracic trauma. Injury. 2012;43(9):1386–92. doi: 10.1016/j.injury.2011.04.014 21565343
42. Chiang WC, Hsieh MJ, Chu HL, Chen AY, Wen SY, Yang WS, et al. The effect of successful intubation on patient outcomes after out-of-hospital cardiac arrest in Taipei. Ann Emerg Med. 2018;71(3):387–96.e2. doi: 10.1016/j.annemergmed.2017.08.008 28967516
43. Roudsari B, Field C, Caetano R. Clustered and missing data in the US National Trauma Data Bank: implications for analysis. Inj Prev. 2008;14(2):96–100. doi: 10.1136/ip.2007.017129 18388229
44. Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35(9):2052–6. doi: 10.1097/01.CCM.0000275267.64078.B0 17568333
45. Afessa B, Gajic O, Morales IJ, Keegan MT, Peters SG, Hubmayr RD. Association between ICU admission during morning rounds and mortality. Chest. 2009;136(6):1489–95. doi: 10.1378/chest.09-0529 19505985
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- „Jednohubky“ z klinického výzkumu – 2024/44
- Je libo čepici místo mozkového implantátu?
Nejčtenější v tomto čísle
- Association of technologically assisted integrated care with clinical outcomes in type 2 diabetes in Hong Kong using the prospective JADE Program: A retrospective cohort analysis
- Correction: Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest–posttest comparison group study
- The impact of continuous quality improvement on coverage of antenatal HIV care tests in rural South Africa: Results of a stepped-wedge cluster-randomised controlled implementation trial
- Variation in racial/ethnic disparities in COVID-19 mortality by age in the United States: A cross-sectional study