Infectious disease pandemic planning and response: Incorporating decision analysis
Autoři:
Freya M. Shearer aff001; Robert Moss aff001; Jodie McVernon aff001; Joshua V. Ross aff004; James M. McCaw aff001
Působiště autorů:
Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
aff001; Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Australia
aff002; Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
aff003; School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
aff004; School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
aff005
Vyšlo v časopise:
Infectious disease pandemic planning and response: Incorporating decision analysis. PLoS Med 17(1): e1003018. doi:10.1371/journal.pmed.1003018
Kategorie:
Policy Forum
doi:
https://doi.org/10.1371/journal.pmed.1003018
Souhrn
Freya Shearer and co-authors discuss the use of decision analysis in planning for infectious disease pandemics.
Klíčová slova:
Antivirals – Decision making – Health education and awareness – Infectious disease surveillance – Infectious diseases – Influenza – Pathogens – Forecasting
Zdroje
1. Sands P, Mundaca-Shah C, Dzau VJ. The neglected dimension of global security—A framework for countering infectious-disease crises. N Engl J Med. 2016;374(13):1281–1287. doi: 10.1056/NEJMsr1600236 26761419
2. Mills CE, Robins JM, Lipsitch M. Transmissibility of 1918 pandemic influenza. Nature. 2004;432:904. doi: 10.1038/nature03063 15602562
3. World Health Organization. Disease Outbreak News 11 June 2009. Influenza A(H1N1)–update 47; 2009 June [cited 2019 Dec 5]. http://www.who.int/csr/don/2009_06_11/en/.
4. Holmes EC, Rambaut A, Andersen KG. Pandemics: Spend on surveillance, not prediction. Nature. 2018;558(7709):180–182. doi: 10.1038/d41586-018-05373-w 29880819
5. McVernon J, McCaw CT, Mathews JD. Model answers or trivial pursuits? The role of mathematical models in influenza pandemic preparedness planning. Influenza Other Resp. 2007;1(2):43–54.
6. Kerkhove MDV, Ferguson NM. Epidemic and intervention modelling–a scientific rationale for policy decisions? Lessons from the 2009 influenza pandemic. Bull World Health Organ. 2012;90(4):306–310. doi: 10.2471/BLT.11.097949 22511828
7. Fox JP, Kilbourne ED. Epidemiology of Influenza: Summary of Influenza Workshop IV. J Infect Dis. 1973;128:361–386.
8. Elveback LR, Fox JP, Ackerman E, Langworthy A, Boyd M, Gatewood L. An influenza simulation model for immunization studies. Am J Epidemiol. 1976;103(2):52–65.
9. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science. 2009;324(5934):1557–1561. doi: 10.1126/science.1176062 19433588
10. Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, Matrajt L, et al. The transmissibility and control of pandemic influenza A (H1N1) virus. Science. 2009;326(5953):729–733. doi: 10.1126/science.1177373 19745114
11. Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437:209. doi: 10.1038/nature04017 16079797
12. Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DAT, et al. Containing pandemic influenza at the source. Science. 2005;309(5737):1083–1087. doi: 10.1126/science.1115717 16079251
13. McCaw JM, Wood JG, McCaw CT, McVernon J. Impact of emerging antiviral drug resistance on influenza containment and spread: influence of subclinical infection and strategic use of a stockpile containing one or two drugs. PLoS ONE. 2008;3(6):1–10.
14. McCaw JM, McVernon J. Prophylaxis or treatment? Optimal use of an antiviral stockpile during an influenza pandemic. Math Biosci. 2007;209(2):336–360. doi: 10.1016/j.mbs.2007.02.003 17416393
15. Moss R, McCaw JM, McVernon J. Diagnosis and antiviral intervention strategies for mitigating an influenza epidemic. PLoS ONE. 2011;6(2):1–10.
16. Moss R, McCaw JM, Cheng AC, Hurt AC, McVernon J. Reducing disease burden in an influenza pandemic by targeted delivery of neuraminidase inhibitors: mathematical models in the Australian context. BMC Infect Dis. 2016;16(1):552. doi: 10.1186/s12879-016-1866-7 27724915
17. McCaw JM, Moss R, McVernon J. A decision support tool for evaluating the impact of a diagnostic capacity and antiviral-delivery constrained intervention strategy on an influenza pandemic. Influenza Other Resp. 2011;5(Suppl. 1):202–229.
18. Bauch C, Lloyd-Smith J, Coffee M, Galvani A. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology. 2005;16(6):791–801. doi: 10.1097/01.ede.0000181633.80269.4c 16222170
19. Chretien JP, Riley S, George DB. Mathematical modeling of the West Africa Ebola epidemic. eLife. 2015;4:e09186. doi: 10.7554/eLife.09186 26646185
20. Nicoll A, Brown C, Karcher F, Penttinen P, Hegermann-Lindencrone M, Villanueva S, et al. Developing pandemic preparedness in Europe in the 21st century: experience, evolution and next steps. Bull World Health Organ. 2012;90:311–317. doi: 10.2471/BLT.11.097972 22511829
21. Parada LV. Public health: Life lessons. Nature. 2011;480:S11. doi: 10.1038/480S11a 22158294
22. Bennett B, Carney T. Public health emergencies of international concern: global, regional, and local responses to risk. Med Law Rev. 2017;25(2):223–239. doi: 10.1093/medlaw/fwx004 28379440
23. News Nature. Pandemic flu: from the front lines. Nature. 2009;461:20–21. doi: 10.1038/461020a 19727174
24. World Health Organization. Pandemic Influenza Risk Management: A WHO guide to inform and harmonize national and international pandemic preparedness and response; Geneva, 2017 May. https://apps.who.int/iris/handle/10665/259893
25. US Department of Health and Human Services. Pandemic Influenza Plan 2017 Update; 2017 June [cited 2019 Dec 5]. https://www.cdc.gov/flu/pandemic-resources
26. Public Health England. Pandemic Influenza Response Plan; London, 2014 Aug [cited 2019 Dec 5]. https://www.gov.uk/government/publications/pandemic-influenza-response-plan
27. Australian Government Department of Health. Australian Health Management Plan for Pandemic Influenza. Canberra; 2014 Aug [cited 2019 Dec 5]. https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-ahmppi.htm
28. McCaw JM, Glass K, Mercer GN, McVernon J. Pandemic controllability: a concept to guide a proportionate and flexible operational response to future influenza pandemics. J Public Health. 2014;36(1):5–12.
29. Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC. Improving the Evidence Base for Decision Making During a Pandemic: The Example of 2009 Influenza A/H1N1. Biosecur Bioterror. 2011;9(2):89–115. doi: 10.1089/bsp.2011.0007 21612363
30. Lipsitch M, Santillana M. Enhancing Situational Awareness to Prevent Infectious Disease Outbreaks from Becoming Catastrophic. In: Inglesby T, Adalja A, editors. Global Catastrophic Biological Risks. Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer; 2019.
31. Polonsky JA, Baidjoe A, Kamvar ZN, Cori A, Durski K, Edmunds WJW, et al. Outbreak analytics: a developing data science for informing the response to emerging pathogens. Phil Trans R Soc B. 2019;374:20180276. doi: 10.1098/rstb.2018.0276 31104603
32. Black AJ, Geard N, McCaw JM, McVernon J, Ross JV. Characterising pandemic severity and transmissibility from data collected during first few hundred studies. Epidemics. 2017;19:61–73. doi: 10.1016/j.epidem.2017.01.004 28189386
33. World Health Organization. Global surveillance during an influenza pandemic; Geneva: 2009 Apr [cited 2019 Dec 5]. https://www.who.int/csr/disease/swineflu/global_pandemic_influenza_surveilance_apr09.pdf
34. Walker JN, Ross JV, Black AJ. Inference of epidemiological parameters from household stratified data. PLoS ONE. 2017;12(10):1–21.
35. Moss R, Fielding JE, Franklin LJ, Stephens N, McVernon J, Dawson P, et al. Epidemic forecasts as a tool for public health: interpretation and (re)calibration. Aust NZ J Publ Heal. 2018;42(1):69–76.
36. Doms C, Kramer SC, Shaman J. Assessing the use of influenza forecasts and epidemiological modeling in public health decision making in the United States. Sci Rep. 2018;8(1):12406. doi: 10.1038/s41598-018-30378-w 30120267
37. Yamana TK, Kandula S, Shaman J. Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States. PLoS Comput Biol. 2017;13(11):1–17.
38. Biggerstaff M, Johansson M, Alper D, Brooks LC, Chakraborty P, Farrow DC, et al. Results from the second year of a collaborative effort to forecast influenza seasons in the United States. Epidemics. 2018;24:26–33. doi: 10.1016/j.epidem.2018.02.003 29506911
39. Viboud C, Sun K, Gaffey R, Ajelli M, Fumanelli L, Merler S, et al. The RAPIDD ebola forecasting challenge: synthesis and lessons learnt. Epidemics. 2018;22:13–21. doi: 10.1016/j.epidem.2017.08.002 28958414
40. Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an influenza pandemic. Nature. 2006;442(7101):448–452. doi: 10.1038/nature04795 16642006
41. Araz OM, Damien P, Paltiel DA, Burke S, Van De Geijn B, Galvani A, et al. Simulating school closure policies for cost effective pandemic decision making. BMC Public Health. 2012;12(1):1.
42. Khazeni N, Hutton DW, Garber AM, Owens DK. Effectiveness and cost-effectiveness of expanded antiviral prophylaxis and adjuvanted vaccination strategies for the next influenza pandemic. Ann Intern Med. 2009;151(12):840–853. doi: 10.7326/0003-4819-151-12-200912150-00156 20008760
43. Morgan O. How decision makers can use quantitative approaches to guide outbreak responses. Phil Trans R Soc B. 2019;374:20180365. doi: 10.1098/rstb.2018.0365 31104605
44. Rivers C, Chretien JP, Riley S, Pavlin JA, Woodward A, Brett-Major D, et al. Using “outbreak science” to strengthen the use of models during epidemics. Nat Commun. 2019;10(1):3102. doi: 10.1038/s41467-019-11067-2 31308372
45. Boneh T, Weymouth PN, Potts R, Bally J, Nicholson AE, Korb KB. Fog forecasting for Melbourne Airport using a Bayesian decision network. Weather Forecast. 2015;30:1218–1232.
46. Wu S, Cheng MH, Beck JL, Heaton TH. An engineering application of earthquake early warning: ePAD-based decision framework for elevator control. J Struct Eng. 2016;142(1):04015092.
47. Dunn CJ, Thompson MP, Calkin DE. A framework for developing safe and effective large-fire response in a new fire management paradigm. Forest Ecol Manag. 2017;404:184–196.
48. Ge L, Mourits MCM, Kristensen AR, Huirne RBM. A modelling approach to support dynamic decision-making in the control of FMD epidemics. Prev Vet Med. 2010;95(3):167–174.
49. Shea K, Tildesley MJ, Runge MC, Fonnesbeck CJ, Ferrari MJ. Adaptive management and the value of information: learning via intervention in epidemiology. PLoS Biol. 2014;12(10):1–11.
50. Probert WJM, Shea K, Fonnesbeck CJ, Runge MC, Carpenter TE, Dürr S, et al. Decision-making for foot-and-mouth disease control: objectives matter. Epidemics. 2016;15:10–19. doi: 10.1016/j.epidem.2015.11.002 27266845
51. Webb CT, Ferrari M, Lindström T, Carpenter T, Dürr S, Garner G, et al. Ensemble modelling and structured decision-making to support emergency disease management. Prev Vet Med. 2017;138:124–133. doi: 10.1016/j.prevetmed.2017.01.003 28237227
52. Yaesoubi R, Cohen T. Identifying cost-effective dynamic policies to control epidemics. Stat Med. 2016;35(28):5189–5209. doi: 10.1002/sim.7047 27449759
53. Australian Government Department of Health and Ageing. Antivirals Evidence Summary; Canberra, 2014 [cited 2019 Dec 5]. https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-ahmppi.htm#comm-reports.
54. McVernon J, McCaw JM, Nolan TM. Modelling strategic use of the national antiviral stockpile during the CONTAIN and SUSTAIN phases of an Australian pandemic influenza response. Aust NZ J Publ Heal. 2010;34(2):113–119.
55. Ibuka Y, Chapman GB, Meyers LA, Li M, Galvani AP. The dynamics of risk perceptions and precautionary behavior in response to 2009 (H1N1) pandemic influenza. BMC Infect Dis. 2010;10(1):296.
56. Davis MDM, Stephenson N, Lohm D, Waller E, Flowers P. Beyond resistance: social factors in the general public response to pandemic influenza. BMC Public Health. 2015;15(1):436.
57. Funk S, Bansal S, Bauch CT, Eames KTD, Edmunds WJ, Galvani AP, et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics. 2015;10:21–25. doi: 10.1016/j.epidem.2014.09.005 25843377
58. McVernon J, Mason K, Petrony S, Nathan P, LaMontagne AD, Bentley R, et al. Recommendations for and compliance with social restrictions during implementation of school closures in the early phase of the influenza A (H1N1) 2009 outbreak in Melbourne, Australia. BMC Infect Dis. 2011;11:257. doi: 10.1186/1471-2334-11-257 21958428
59. DeBruin D, Liaschenko J, Marshall MF. Social justice in pandemic preparedness. Am J Public Health. 2012;102(4):586–591. doi: 10.2105/AJPH.2011.300483 22397337
60. Gregory R, Failing L, Harstone G, Long T, McDaniels T, Ohlson D. Structured decision making: a practical guide to environmental management choices. Oxford, United Kingdom: Wiley-Blackwell; 2012.
61. Klein CJ, Jupiter SD, Possingham HP. Setting conservation priorities in Fiji: decision science versus additive scoring systems. Mar Policy. 2014;48:204–205.
62. Marcot BG, Thompson MP, Runge MC, Thompson FR, McNulty S, Cleaves D, et al. Recent advances in applying decision science to managing national forests. Forest Ecol Manag. 2012;285:123–132.
63. Moss R, Zarebski AE, Dawson P, Franklin LJ, Birrell FA, McCaw JM. Anatomy of a seasonal influenza epidemic forecast. Commun Dis Intell. 2019;43:1–14.
64. Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-chavez C. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol. 2003;224:1–8. doi: 10.1016/s0022-5193(03)00228-5 12900200
65. Gumel AB, Ruan S, Day T, Watmough J, Brauer F, Van Den Driessche P, et al. Modelling strategies for controlling SARS outbreaks. Proc Royal Soc B. 2004;271:2223–2232.
66. Day T, Park A, Madras N, Gumel A, Wu J. When is quarantine a useful control strategy for emerging infectious diseases? Am J Epidemiol. 2006;163(5):479–485. doi: 10.1093/aje/kwj056 16421244
67. Wong-Parodi G, Krishnamurti T, Davis A, Schwartz D, Fischhoff B. A decision science approach for integrating social science in climate and energy solutions. Nat Clim Change. 2016;6:563.
Štítky
Interní lékařstvíČlánek vyšel v časopise
PLOS Medicine
2020 Číslo 1
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Moje zkušenosti s Magnosolvem podávaným pacientům jako profylaxe migrény a u pacientů s diagnostikovanou spazmofilní tetanií i při normomagnezémii - MUDr. Dana Pecharová, neurolog
- Cinitaprid – nové bezpečné prokinetikum s odlišným mechanismem účinku
- Antikoagulační léčba u pacientů před operačními výkony
- Nedostatek hořčíku se projevuje u stále více lidí
Nejčtenější v tomto čísle
- Association of puberty timing with type 2 diabetes: A systematic review and meta-analysis
- Advances in cervical cancer prevention: Efficacy, effectiveness, elimination?
- Infectious disease pandemic planning and response: Incorporating decision analysis
- Projected costs of single-payer healthcare financing in the United States: A systematic review of economic analyses