Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study
Autoři:
Uma V. Mahajan aff001; Vijay R. Varma aff001; Michael E. Griswold aff002; Chad T. Blackshear aff002; Yang An aff003; Anup M. Oommen aff004; Sudhir Varma aff005; Juan C. Troncoso aff006; Olga Pletnikova aff006; Richard O’Brien aff007; Timothy J. Hohman aff008; Cristina Legido-Quigley aff009; Madhav Thambisetty aff001
Působiště autorů:
Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
aff001; University of Mississippi Medical Center, Jackson, Mississippi, United States of America
aff002; Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
aff003; Glycoscience Group, NCBES National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
aff004; HiThru Analytics, Princeton, New Jersey, United States of America
aff005; Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
aff006; Duke University School of Medicine, Durham, North Carolina, United States of America
aff007; Vanderbilt Memory & Alzheimer’s Center, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
aff008; Institute of Pharmaceutical Science, Kings College London, London, United Kingdom
aff009; Steno Diabetes Center Copenhagen, Gentofte, Denmark
aff010
Vyšlo v časopise:
Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study. PLoS Med 17(1): e32767. doi:10.1371/journal.pmed.1003012
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003012
Souhrn
Background
There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways.
Methods and findings
We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators.
Conclusions
In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD.
Klíčová slova:
Alzheimer's disease – Gene expression – Hippocampus – Metabolic pathways – Metabolites – Metabolomics – Methionine – Urea
Zdroje
1. Xu J, Begley P, Church SJ, Patassini S, Hollywood KA, Jullig M, et al. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: Snapshot of a pervasive metabolic disorder. Biochim Biophys Acta. 2016;1862(6):1084–92. Epub 2016/03/10. doi: 10.1016/j.bbadis.2016.03.001 26957286
2. Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, et al. Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging. 2014;35(9):1992–2003. Epub 2014/04/22. doi: 10.1016/j.neurobiolaging.2014.03.013 24746363
3. Inoue K, Tsutsui H, Akatsu H, Hashizume Y, Matsukawa N, Yamamoto T, et al. Metabolic profiling of Alzheimer’s disease brains. Sci Rep. 2013;3:2364. Epub 2013/08/07. doi: 10.1038/srep02364 23917584
4. Morrison LD, Smith DD, Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem. 1996;67(3):1328–31. Epub 1996/09/01. doi: 10.1046/j.1471-4159.1996.67031328.x 8752143
5. Cedernaes J, Schioth HB, Benedict C. Efficacy of antibody-based therapies to treat Alzheimer’s disease: just a matter of timing? Exp Gerontol. 2014;57:104–6. Epub 2014/05/20. doi: 10.1016/j.exger.2014.05.002 24835192
6. Rosenblum WI. Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging. 2014;35(5):969–74. Epub 2013/11/12. doi: 10.1016/j.neurobiolaging.2013.10.085 24210593
7. Ganjei JK. Targeting amyloid precursor protein secretases: Alzheimer’s disease and beyond. Drug News Perspect. 2010;23(9):573–84. Epub 2010/12/15. doi: 10.1358/dnp.2010.23.9.1507297 21152452
8. An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, et al. (2018) Evidence for Brain Glucose Dysregulation in Alzheimer’s Disease. Alzheimer’s and Dementia. 14(3):318–329.
9. Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med. 2018;15(1):e1002482. Epub 2018/01/26. doi: 10.1371/journal.pmed.1002482 29370177
10. Snowden SG, Ebshiana AA, Hye A, An Y, Pletnikova O, O’Brien R, et al. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. PLoS Med. 2017;14(3):e1002266. Epub 2017/03/23. doi: 10.1371/journal.pmed.1002266 28323825
11. Kihara T, Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol Exp (Wars). 2004;64(1):99–105. Epub 2004/06/12.
12. Bazzari FH, Abdallah DM, El-Abhar HS. Pharmacological Interventions to Attenuate Alzheimer’s Disease Progression: The Story So Far. Curr Alzheimer Res. 2019. Epub 2019/03/05.
13. Fuso A, Scarpa S. One-carbon metabolism and Alzheimer’s disease: is it all a methylation matter? Neurobiol Aging. 2011;32(7):1192–5. Epub 2011/04/29. doi: 10.1016/j.neurobiolaging.2011.01.012 21524430
14. Whiley L, Sen A, Heaton J, Proitsi P, Garcia-Gomez D, Leung R, et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol Aging. 2014;35(2):271–8. Epub 2013/09/18. doi: 10.1016/j.neurobiolaging.2013.08.001 24041970
15. Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374). Epub 2018/01/27.
16. Graham SF, Chevallier OP, Elliott CT, Holscher C, Johnston J, McGuinness B, et al. Untargeted metabolomic analysis of human plasma indicates differentially affected polyamine and L-arginine metabolism in mild cognitive impairment subjects converting to Alzheimer’s disease. PLoS ONE. 2015;10(3):e0119452. Epub 2015/03/25. doi: 10.1371/journal.pone.0119452 25803028
17. Roe AJ, Zhang S, Bhadelia RA, Johnson EJ, Lichtenstein AH, Rogers GT, et al. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. Am J Clin Nutr. 2017;105(6):1283–90. Epub 2017/03/31. doi: 10.3945/ajcn.116.137158 28356272
18. Bekdash RA. Choline, the brain and neurodegeneration: insights from epigenetics. Front Biosci (Landmark Ed). 2018;23:1113–43. Epub 2017/09/21.
19. Mandal PK, Saharan S, Tripathi M, Murari G. Brain glutathione levels—a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol Psychiatry. 2015;78(10):702–10. Epub 2015/05/25. doi: 10.1016/j.biopsych.2015.04.005 26003861
20. Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J Gerontol A Biol Sci Med Sci. 2008;63(12):1416–9. Epub 2009/01/08. doi: 10.1093/gerona/63.12.1416 19126858
21. O’Brien RJ, Resnick SM, Zonderman AB, Ferrucci L, Crain BJ, Pletnikova O, et al. Neuropathologic studies of the Baltimore Longitudinal Study of Aging (BLSA). J Alzheimers Dis. 2009;18(3):665–75. Epub 2009/08/08. doi: 10.3233/JAD-2009-1179 19661626
22. Gamaldo A, Moghekar A, Kilada S, Resnick SM, Zonderman AB, O’Brien R. Effect of a clinical stroke on the risk of dementia in a prospective cohort. Neurology. 2006;67(8):1363–9. Epub 2006/10/25. doi: 10.1212/01.wnl.0000240285.89067.3f 17060561
23. Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O’Brien RJ. Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann Neurol. 2008;64(2):168–76. Epub 2008/05/23. doi: 10.1002/ana.21413 18496870
24. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;41(4):479–86. Epub 1991/04/01. doi: 10.1212/wnl.41.4.479 2011243
25. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59. Epub 1991/01/01. doi: 10.1007/bf00308809 1759558
26. Iacono D, Resnick SM, O’Brien R, Zonderman AB, An Y, Pletnikova O, et al. Mild cognitive impairment and asymptomatic Alzheimer disease subjects: equivalent beta-amyloid and tau loads with divergent cognitive outcomes. J Neuropathol Exp Neurol. 2014;73(4):295–304. Epub 2014/03/13. doi: 10.1097/NEN.0000000000000052 24607960
27. Reitz C, Honig L, Vonsattel JP, Tang MX, Mayeux R. Memory performance is related to amyloid and tau pathology in the hippocampus. J Neurol Neurosurg Psychiatry. 2009;80(7):715–21. Epub 2009/03/05. doi: 10.1136/jnnp.2008.154146 19258354
28. Knopman DS, Lundt ES, Therneau TM, Vemuri P, Lowe VJ, Kantarci K, et al. Entorhinal cortex tau, amyloid-beta, cortical thickness and memory performance in non-demented subjects. Brain. 2019. Epub 2019/02/14.
29. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225(4667):1168–70. Epub 1984/09/14. doi: 10.1126/science.6474172 6474172
30. Buckley RF, Hanseeuw B, Schultz AP, Vannini P, Aghjayan SL, Properzi MJ, et al. Region-Specific Association of Subjective Cognitive Decline With Tauopathy Independent of Global beta-Amyloid Burden. JAMA Neurol. 2017;74(12):1455–63. Epub 2017/10/04. doi: 10.1001/jamaneurol.2017.2216 28973551
31. Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2008;35(12):2169–81. Epub 2008/06/21. doi: 10.1007/s00259-008-0833-y 18566819
32. Larner AJ. The cerebellum in Alzheimer’s disease. Dement Geriatr Cogn Disord. 1997;8(4):203–9. Epub 1997/07/01. doi: 10.1159/000106632 9213064
33. Koike S, Bundo M, Iwamoto K, Suga M, Kuwabara H, Ohashi Y, et al. A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study. Transl Psychiatry. 2014;4:e379. Epub 2014/04/10. doi: 10.1038/tp.2014.19 24713860
34. Fujii T, Hattori K, Miyakawa T, Ohashi Y, Sato H, Kunugi H. Metabolic profile alterations in the postmortem brains of patients with schizophrenia using capillary electrophoresis-mass spectrometry. Schizophr Res. 2017;183:70–4. Epub 2016/11/20. doi: 10.1016/j.schres.2016.11.011 27856156
35. Soga T, Heiger DN. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2000;72(6):1236–41. Epub 2000/03/31. doi: 10.1021/ac990976y 10740865
36. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2002;74(10):2233–9. Epub 2002/06/01. doi: 10.1021/ac020064n 12038746
37. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2(5):488–94. Epub 2003/10/30. doi: 10.1021/pr034020m 14582645
38. Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K, Ueno Y, et al. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol Biosyst. 2008;4(2):135–47. Epub 2008/01/24. doi: 10.1039/b714176a 18213407
39. Sasaki K, Sagawa H, Suzuki M, Yamamoto H, Tomita M, Soga T, et al. Metabolomics Platform with Capillary Electrophoresis Coupled with High-Resolution Mass Spectrometry for Plasma Analysis. Anal Chem. 2019;91(2):1295–301. Epub 2018/12/01. doi: 10.1021/acs.analchem.8b02994 30500154
40. Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann HP, Tomita M. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem. 2009;81(15):6165–74. Epub 2009/06/16. doi: 10.1021/ac900675k 19522513
41. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289–300.
42. Lee J. Statistical bioinformatics. 1et ed. New Jersey: John Wiley & Sons Inc.; 2010.
43. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64. Epub 2003/08/20. doi: 10.1093/biostatistics/4.2.249 12925520
44. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 2005;33(20):e175. Epub 2005/11/15. doi: 10.1093/nar/gni179 16284200
45. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. Epub 2015/01/22. doi: 10.1093/nar/gkv007 25605792
46. Paglia G, Stocchero M, Cacciatore S, Lai S, Angel P, Alam MT, et al. Unbiased Metabolomic Investigation of Alzheimer’s Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism. J Proteome Res. 2016;15(2):608–18. Epub 2015/12/31. doi: 10.1021/acs.jproteome.5b01020 26717242
47. Wood PL, Etienne P, Lal S, Nair NP, Finlayson MH, Gauthier S, et al. A post-mortem comparison of the cortical cholinergic system in Alzheimer’s disease and Pick’s disease. J Neurol Sci. 1983;62(1–3):211–7. Epub 1983/12/01. doi: 10.1016/0022-510x(83)90200-9 6142096
48. Yates CM, Simpson J, Gordon A. Regional brain 5-hydroxytryptamine levels are reduced in senile Down’s syndrome as in Alzheimer’s disease. Neurosci Lett. 1986;65(2):189–92. Epub 1986/04/11. doi: 10.1016/0304-3940(86)90302-2 2940479
49. Foster NL, Tamminga CA, O’Donohue TL, Tanimoto K, Bird ED, Chase TN. Brain choline acetyltransferase activity and neuropeptide Y concentrations in Alzheimer’s disease. Neurosci Lett. 1986;63(1):71–5. Epub 1986/01/02. doi: 10.1016/0304-3940(86)90015-7 3754039
50. Rossor MN, Garrett NJ, Johnson AL, Mountjoy CQ, Roth M, Iversen LL. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain. 1982;105(Pt 2):313–30. Epub 1982/06/01. doi: 10.1093/brain/105.2.313 7082992
51. Wang H, Tan L, Wang HF, Liu Y, Yin RH, Wang WY, et al. Magnetic Resonance Spectroscopy in Alzheimer’s Disease: Systematic Review and Meta-Analysis. J Alzheimers Dis. 2015;46(4):1049–70. Epub 2015/09/25. doi: 10.3233/JAD-143225 26402632
52. Ganz AB, Cohen VV, Swersky CC, Stover J, Vitiello GA, Lovesky J, et al. Genetic Variation in Choline-Metabolizing Enzymes Alters Choline Metabolism in Young Women Consuming Choline Intakes Meeting Current Recommendations. Int J Mol Sci. 2017;18(2). Epub 2017/01/31.
53. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, et al. S-Adenosylmethionine and methylation. FASEB J. 1996;10(4):471–80. Epub 1996/03/01. 8647346
54. Field MS, Shields KS, Abarinov EV, Malysheva OV, Allen RH, Stabler SP, et al. Reduced MTHFD1 activity in male mice perturbs folate- and choline-dependent one-carbon metabolism as well as transsulfuration. J Nutr. 2013;143(1):41–5. Epub 2012/11/30. doi: 10.3945/jn.112.169821 23190757
55. Ma S, Gladyshev VN. Molecular signatures of longevity: Insights from cross-species comparative studies. Semin Cell Dev Biol. 2017;70:190–203. Epub 2017/08/13. doi: 10.1016/j.semcdb.2017.08.007 28800931
56. Lee BC, Kaya A, Gladyshev VN. Methionine restriction and life-span control. Ann N Y Acad Sci. 2016;1363:116–24. Epub 2015/12/15. doi: 10.1111/nyas.12973 26663138
57. Tapia-Rojas C, Lindsay CB, Montecinos-Oliva C, Arrazola MS, Retamales RM, Bunout D, et al. Is L-methionine a trigger factor for Alzheimer’s-like neurodegeneration?: Changes in Abeta oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener. 2015;10:62. Epub 2015/11/23. doi: 10.1186/s13024-015-0057-0 26590557
58. Lopez LM, Harris SE, Luciano M, Liewald D, Davies G, Gow AJ, et al. Evolutionary conserved longevity genes and human cognitive abilities in elderly cohorts. Eur J Hum Genet. 2012;20(3):341–7. Epub 2011/11/03. doi: 10.1038/ejhg.2011.201 22045296
59. Hainsworth AH, Yeo NE, Weekman EM, Wilcock DM. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta. 2016;1862(5):1008–17. Epub 2015/12/23. doi: 10.1016/j.bbadis.2015.11.015 26689889
60. Chon J, Stover PJ, Field MS. Targeting nuclear thymidylate biosynthesis. Mol Aspects Med. 2017;53:48–56. Epub 2016/11/24. doi: 10.1016/j.mam.2016.11.005 27876557
61. Hou Y, Song H, Croteau DL, Akbari M, Bohr VA. Genome instability in Alzheimer disease. Mech Ageing Dev. 2017;161(Pt A):83–94. Epub 2016/04/24. doi: 10.1016/j.mad.2016.04.005 27105872
62. Garcia-Gimenez JL, Roma-Mateo C, Perez-Machado G, Peiro-Chova L, Pallardo FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med. 2017;112:36–48. Epub 2017/07/15. doi: 10.1016/j.freeradbiomed.2017.07.008 28705657
63. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci. 2013;14(10):21021–44. Epub 2013/10/23. doi: 10.3390/ijms141021021 24145751
64. Duffy SL, Lagopoulos J, Hickie IB, Diamond K, Graeber MB, Lewis SJ, et al. Glutathione relates to neuropsychological functioning in mild cognitive impairment. Alzheimers Dement. 2014;10(1):67–75. Epub 2013/05/22. 23688577
65. Pan X, Nasaruddin MB, Elliott CT, McGuinness B, Passmore AP, Kehoe PG, et al. Alzheimer’s disease-like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging. 2016;38:151–63. Epub 2016/02/02. doi: 10.1016/j.neurobiolaging.2015.11.014 26827653
66. Gamble LD, Hogarty MD, Liu X, Ziegler DS, Marshall G, Norris MD, et al. Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma. Front Oncol. 2012;2:162. Epub 2012/11/28. doi: 10.3389/fonc.2012.00162 23181218
67. Danysz W, Parsons CG. Alzheimer’s disease, beta-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. Br J Pharmacol. 2012;167(2):324–52. Epub 2012/06/01. doi: 10.1111/j.1476-5381.2012.02057.x 22646481
68. Gilad GM, Gilad VH. Overview of the brain polyamine-stress-response: regulation, development, and modulation by lithium and role in cell survival. Cell Mol Neurobiol. 2003;23(4–5):637–49. Epub 2003/09/30. doi: 10.1023/a:1025036532672 14514021
69. Pegg AE. Functions of Polyamines in Mammals. J Biol Chem. 2016;291(29):14904–12. Epub 2016/06/09. doi: 10.1074/jbc.R116.731661 27268251
70. Skatchkov SN, Woodbury-Farina MA, Eaton M. The role of glia in stress: polyamines and brain disorders. Psychiatr Clin North Am. 2014;37(4):653–78. Epub 2014/12/03. doi: 10.1016/j.psc.2014.08.008 25455070
71. Pantazatos SP, Andrews SJ, Dunning-Broadbent J, Pang J, Huang YY, Arango V, et al. Isoform-level brain expression profiling of the spermidine/spermine N1-Acetyltransferase1 (SAT1) gene in major depression and suicide. Neurobiol Dis. 2015;79:123–34. Epub 2015/05/12. doi: 10.1016/j.nbd.2015.04.014 25959060
72. Limon A, Mamdani F, Hjelm BE, Vawter MP, Sequeira A. Targets of polyamine dysregulation in major depression and suicide: Activity-dependent feedback, excitability, and neurotransmission. Neurosci Biobehav Rev. 2016;66:80–91. Epub 2016/04/26. doi: 10.1016/j.neubiorev.2016.04.010 27108532
73. Zahedi K, Huttinger F, Morrison R, Murray-Stewart T, Casero RA, Strauss KI. Polyamine catabolism is enhanced after traumatic brain injury. J Neurotrauma. 2010;27(3):515–25. Epub 2009/12/09. doi: 10.1089/neu.2009.1097 19968558
74. Wood PL, Khan MA, Kulow SR, Mahmood SA, Moskal JR. Neurotoxicity of reactive aldehydes: the concept of "aldehyde load" as demonstrated by neuroprotection with hydroxylamines. Brain Res. 2006;1095(1):190–9. Epub 2006/05/30. doi: 10.1016/j.brainres.2006.04.038 16730673
75. Fan J, Chen M, Wang X, Tian Z, Wang J, Fan D, et al. Targeting Smox is neuroprotective and ameliorates brain inflammation in cerebral ischemia/reperfusion rats. Toxicol Sci. 2018. Epub 2018/12/24.
76. Hansmannel F, Sillaire A, Kamboh MI, Lendon C, Pasquier F, Hannequin D, et al. Is the urea cycle involved in Alzheimer’s disease? J Alzheimers Dis. 2010;21(3):1013–21. Epub 2010/08/10. doi: 10.3233/JAD-2010-100630 20693631
77. Seiler N, Daune-Anglard G. Endogenous ornithine in search for CNS functions and therapeutic applications. Metab Brain Dis. 1993;8(3):151–79. Epub 1993/09/01. doi: 10.1007/bf00996928 8272027
78. Jesko H, Lukiw WJ, Wilkaniec A, Cieslik M, Gassowska-Dobrowolska M, Murawska E, et al. Altered Expression of Urea Cycle Enzymes in Amyloid-beta Protein Precursor Overexpressing PC12 Cells and in Sporadic Alzheimer’s Disease Brain. J Alzheimers Dis. 2018;62(1):279–91. Epub 2018/02/15. doi: 10.3233/JAD-170427 29439324
79. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81(2):89–131. Epub 2007/02/06. doi: 10.1016/j.pneurobio.2006.12.003 17275978
80. Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci. 1998;20(4–5):271–6. Epub 1998/10/21. doi: 10.1159/000017321 9778562
81. Zaroff S, Leone P, Markov V, Francis JS. Transcriptional regulation of N-acetylaspartate metabolism in the 5xFAD model of Alzheimer’s disease: evidence for neuron-glia communication during energetic crisis. Mol Cell Neurosci. 2015;65:143–52. Epub 2015/03/15. doi: 10.1016/j.mcn.2015.03.009 25766789
82. Yudkoff M, Nelson D, Daikhin Y, Erecinska M. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem. 1994;269(44):27414–20. Epub 1994/11/04. 7961653
83. Arai H, Kobayashi K, Ichimiya Y, Kosaka K, Iizuka R. A preliminary study of free amino acids in the postmortem temporal cortex from Alzheimer-type dementia patients. Neurobiol Aging. 1984;5(4):319–21. Epub 1984/01/01. doi: 10.1016/0197-4580(84)90009-5 6152305
84. Ambrad Giovannetti E, Fuhrmann M. Unsupervised excitation: GABAergic dysfunctions in Alzheimer’s disease. Brain Res. 2019;1707:216–26. Epub 2018/12/07. doi: 10.1016/j.brainres.2018.11.042 30503351
85. Gueli MC, Taibi G. Alzheimer’s disease: amino acid levels and brain metabolic status. Neurol Sci. 2013;34(9):1575–9. Epub 2013/01/29. doi: 10.1007/s10072-013-1289-9 23354600
86. Mucke L, Selkoe DJ. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. 2012;2(7):a006338. Epub 2012/07/05. doi: 10.1101/cshperspect.a006338 22762015
87. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. 1994;62(1):15–30. Epub 1994/09/01. doi: 10.1016/0306-4522(94)90311-5 7816197
88. Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer’s Disease. Trends Mol Med. 2019;25(2):77–95. Epub 2019/01/07. doi: 10.1016/j.molmed.2018.11.006 30611668
89. Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with gamma-secretase and regulates neuronal amyloid beta-peptide levels. Alzheimers Res Ther. 2017;9(1):57. Epub 2017/08/03. doi: 10.1186/s13195-017-0279-1 28764767
90. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med. 2014;20(8):886–96. Epub 2014/06/30. doi: 10.1038/nm.3639 24973918
91. Heja L, Nyitrai G, Kekesi O, Dobolyi A, Szabo P, Fiath R, et al. Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol. 2012;10:26. Epub 2012/03/17. doi: 10.1186/1741-7007-10-26 22420899
92. Yoon BE, Woo J, Chun YE, Chun H, Jo S, Bae JY, et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol. 2014;592(22):4951–68. Epub 2014/09/23. doi: 10.1113/jphysiol.2014.278754 25239459
93. Ivanova S, Batliwalla F, Mocco J, Kiss S, Huang J, Mack W, et al. Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proc Natl Acad Sci U S A. 2002;99(8):5579–84. Epub 2002/04/12. doi: 10.1073/pnas.082609299 11943872
94. Yu Z, Li W, Hillman J, Brunk UT. Human neuroblastoma (SH-SY5Y) cells are highly sensitive to the lysosomotropic aldehyde 3-aminopropanal. Brain Res. 2004;1016(2):163–9. Epub 2004/07/13. doi: 10.1016/j.brainres.2004.04.075 15246852
95. Wood PL, Khan MA, Moskal JR. The concept of "aldehyde load" in neurodegenerative mechanisms: cytotoxicity of the polyamine degradation products hydrogen peroxide, acrolein, 3-aminopropanal, 3-acetamidopropanal and 4-aminobutanal in a retinal ganglion cell line. Brain Res. 2007;1145:150–6. Epub 2007/03/17. doi: 10.1016/j.brainres.2006.10.004 17362887
96. Faber J, Fonseca LM. How sample size influences research outcomes. Dental Press J Orthod. 2014;19(4):27–9. Epub 2014/10/04. doi: 10.1590/2176-9451.19.4.027-029.ebo 25279518
97. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–76. Epub 2013/04/11. doi: 10.1038/nrn3475 23571845
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- „Jednohubky“ z klinického výzkumu – 2024/44
- Je libo čepici místo mozkového implantátu?
Nejčtenější v tomto čísle
- Association of puberty timing with type 2 diabetes: A systematic review and meta-analysis
- Advances in cervical cancer prevention: Efficacy, effectiveness, elimination?
- Infectious disease pandemic planning and response: Incorporating decision analysis
- Projected costs of single-payer healthcare financing in the United States: A systematic review of economic analyses