#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

AN IN VIVO STUDY OF INTRAVITREAL RANIBIZUMAB FOLLOWING SUBRETINAL INOCULATION OF RB CELLS IN RABBITS’ EYES


Autoři: AA. Azimah Nor 1,2;  SJ. Toh Diana 1;  TK. Fathlun Ain Tengku 3,4;  S. Sarina 5;  Shamel Khairy ST. 1;  Y. Azhany 1;  O. Nor Hayati 6;  AT. Liza-Sharmini 1
Působiště autorů: Department of Ophthalmology and Visual Science, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan 1;  Department of Ophthalmology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor Branch, 47000 Jalan Hospital, Sungai Buloh, Selangor 2;  Department of Ophthalmology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 59090 Kuala Lumpur, Wilayah Persekutuan 3;  University Malaya Eye Research Centre, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 59090 Kuala Lumpur, Wilayah Persekutuan 4;  Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan 5;  Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan 6
Vyšlo v časopise: Čes. a slov. Oftal., 78, 2022, No. 3, p. 112-120
Kategorie: Původní práce
doi: https://doi.org/10.31348/2022/13

Souhrn

Aim: This study aimed to determine the effects of a single intravitreal ranibizumab injection in rabbits induced with retinoblastoma (RB).

Material and Methods: RB was induced in six New Zealand white rabbits by subretinal injection of a cultured WERI-RBb-1 cell line into the right eye. After six weeks, Group A (n = 3) was given intravitreal ranibizumab injection (0.3mg in 0.03ml) and Group B (n = 3) was the control. Baseline and serial clinical examinations were performed on days 1, 3, 6, 12, 15, 18 and 21. The right eyes were enucleated for both groups on day 21 for histopathological examination.

Results: The rabbits in both groups developed intraocular lesions which was detectable clinically at one-week post-tumor inoculation. The tumor grew slowly without spontaneous regression. After the animals in Group A were given an intravitreal ranibizumab injection, regression of the tumor was detected clinically, while the tumor in Group B continued to grow slowly. Histopathological findings confirmed the presence of a tumor that closely resembled features of poorly differentiated human RB cells. At the end of 21 days, the size of the tumor was larger in Group B in comparison to Group A. However, the treated group also developed a focal area of retinal hyperplasia. There was no significant side effect of ranibizumab injection except temporary high intraocular pressure immediately post-injection, which was relieved after paracentesis.

Conclusions: Intravitreal ranibizumab is a potential treatment for RB. It is an effective therapy with a tolerable safety profile in this animal experimental study.


Zdroje

1. Bishop JO, Madson EC. Retinoblastoma. Review of the current status. Survey of ophthalmology. 1975;19:342-366.

2. MacCarthy A, Draper GJ, Steliarova-Foucher E, Kingston JE. Retinoblastoma incidence and survival in European children (1978- 1997). Report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42:2092-2102.

3. Shields CL, Mashayekhi A, Demirci H, Meadows AT, Shields JA. Practical approach to management of retinoblastoma. Archives of ophthalmology (Chicago, Ill : 1960). 2004;122:729-735.

4. Kivela T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93:1129-1131.

5. Shields CL, Shields JA. Basic understanding of current classification and management of retinoblastoma. Curr Opin Ophthalmol. 2006;17:228-234.

6. Chan HS, Gallie BL, Munier FL, Beck Popovic M. Chemotherapy for retinoblastoma. Ophthalmol Clin North Am. 2005;18:55-63, viii.

7. Shields CL, Mashayekhi A, Au AK, et al. The International Classification of Retinoblastoma predicts chemoreduction success. Ophthalmology. 2006;113:2276-2280.

8. Chawla B, Singh R. Recent advances and challenges in the management of retinoblastoma. ndian J Ophthalmol. 2017;65:133-139.

9. Shields CL, Bianciotto CG, Jabbour P, et al. Intra-arterial chemotherapy for retinoblastoma: report No. 1, control of retinal tumors, subretinal seeds, and vitreous seeds. Archives of ophthalmology (Chicago, Ill : 1960). 2011;129:1399-1406.

10. Hahn SM, Kim HS, Kim DJ, Lee SC, Lyu CJ, Han JW. Favorable outcome of alternate systemic and intra-arterial chemotherapy for retinoblastoma. Pediatr Hematol Oncol. 2016;33:74-82.

11. Munier FL, Gaillard MC, Balmer A, et al. Intravitreal chemotherapy for vitreous disease in retinoblastoma revisited: from prohibition to conditional indications. Br J Ophthalmol. 2012;96:1078-1083.

12. Shields CL, Lally SE, Leahey AM, et al. Targeted retinoblastoma management: when to use intravenous, intra-arterial, periocular, and intravitreal chemotherapy. Curr Opin Ophthalmol. 2014;25:374-385.

13. Raval V, Bowen RC, Soto H, Singh A. Intravenous Chemotherapy for Retinoblastoma in the Era of Intravitreal Chemotherapy: A Systematic Review. Ocul Oncol Pathol. 2021;7:142 148.

14. Houston SK, Murray TG, Wolfe SQ, Fernandes CE. Current update on retinoblastoma. Int Ophthalmol Clin. 2011;51:77-91.

15. Houston SK, Pina Y, Murray TG, et al. Novel retinoblastoma treatment avoids chemotherapy: the effect of optimally timed combination therapy with angiogenic and glycolytic inhibitors on LH(BETA) T(AG) retinoblastoma tumors. Clin Ophthalmol. 2011;5:129-137.

16. Lee SY, Kim DK, Cho JH, Koh JY, Yoon YH. Inhibitory effect of bevacizumab on the angiogenesis and growth of retinoblastoma. Archives of ophthalmology (Chicago, Ill : 1960). 2008;126:953-958.

17. Fogli S, Del Re M, Rofi E, Posarelli C, Figus M, Danesi R. Clinical pharmacology of intravitreal anti-VEGF drugs. Eye (London, England). 2018;32:1010-1020.

18. Kang SJ, Grossniklaus HE. Rabbit model of retinoblastoma. J Biomed Biotechnol. 2011;2011:394730.

19. Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM. Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis. 2008;14:2211 2226.

20. Chevez-Barrios P, Hurwitz MY, Louie K, et al. Metastatic and nonmetastatic models of retinoblastoma. Am J Pathol. 2000;157:1405-1412.

21. Busch M, Philippeit C, Weise A, Dunker N. Re-characterization of established human retinoblastoma cell lines. Histochem Cell Biol. 2015;143:325-338.

22. Reid TW, Albert DM, Rabson AS, et al. Characteristics of an established cell line of retinoblastoma. J Natl Cancer Inst. 1974;53:347- 360.

23. Faulds D, Goa KL, Benfield P. Erratum to: Cyclosporin: A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Use in Immunoregulatory Disorders. Drugs. 1993;46:377.

24. Sang DN, Albert DM. Retinoblastoma: clinical and histopathologic features. Hum Pathol. 1982;13:133-147.

25. Yanoff M, Fine BS. Glutaraldehyde fixation of routine surgical eye tissue. Am J Ophthalmol. 1967;63:137-140.

26. Margo CE, Lee A. Fixation of whole eyes: the role of fixative osmolarity in the production of tissue artifact. Graefes Arch Clin Exp Ophthalmol. 1995;233:366-370.

27. Kiernan M. Picking up the pieces. Interview by Kate Williams. Nurs Stand. 1999;13:12-13.

28. Cleary PE, Ryan SJ. Experimental posterior penetrating eye injury in the rabbit. II. Histology of wound, vitreous, and retina. Br J Ophthalmol. 1979;63:312-321.

29. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83:155-158.

30. Indovina P, Acquaviva A, De Falco G, et al. Downregulation and aberrant promoter methylation of p16INK4A: a possible novel heritable susceptibility marker to retinoblastoma. J Cell Physiol. 2010;223:143-150.

31. Kandalam MM, Beta M, Maheswari UK, Swaminathan S, Krishnakumar S. Oncogenic microRNA 17-92 cluster is regulated by epithelial cell adhesion molecule and could be a potential therapeutic target in retinoblastoma. Mol Vis. 2012;18:2279-2287.

32. Liu SS, Wang YS, Sun YF, et al. Plasma microRNA-320, microRNA- let-7e and microRNA 21 as novel potential biomarkers for the detection of retinoblastoma. Biomed Rep. 2014;2:424-428.

Štítky
Oftalmologie

Článek vyšel v časopise

Česká a slovenská oftalmologie

Číslo 3

2022 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#