Dětská obezita: příčiny, důsledky a prevence
Autoři:
Aus Tariq Ali; Faisal Al-Ani; Osamah Al-Ani
Vyšlo v časopise:
Čes. slov. Farm., 2023; 72, 21-36
Kategorie:
Přehledy a odborná sdělení
doi:
https://doi.org/https://doi.org/10.5817/CSF2023-1-21
Souhrn
V důsledku dramatického nárůstu prevalence nadváhy a obezity u dětí je dětská obezita jedním z nejzávažnějších globálních problémů veřejného zdraví 21. století. K nárůstu hmotnosti dochází, když příjem energie převyšuje její výdej. Na její patogenezi se podílejí jak genetické faktory, tak faktory prostředí (např. sedavý způsob života). Dětská obezita je spojena s fyzickými, psychologickými a sociálními důsledky. U obézních dětí je vyšší riziko zvýšené glykemie nalačno, inzulinové rezistence, poruchy glukózové tolerance, diabetu 2. typu, hypertenze, syndromu polycystických ovarií (PCOS), aterosklerózy a kardiovaskulárních onemocnění (CVD), spánkové apnoe a astmatu. Psychologické a sociální důsledky zahrnují nízké sebevědomí, sociální nepohodlí a izolaci a deprese. Od doby, kdy byl COVID-19 prohlášen za celosvětovou pandemii, byly drasticky postiženy miliony dětí a dospívajících na celém světě. Na jedné straně COVID-19 zvýšil prevalenci přibývání na váze a dětské obezity, na straně druhé přestavuje COVID-19 pro obézní děti velké riziko. V rámci tohoto příspěvku uvádíme podrobnosti o endokrinních, metabolických a epidemiologických aspektech dětské obezity se stručnou diskusí o vztahu mezi COVID-19 a dětskou obezitou. Kapitola týkající se endokrinních aspektů se zaměřila na patofyziologii dětské obezity a úlohu adipocytů a inzulinu v mechanismu vzniku obezity. Kapitola o metabolických aspektech se zabývá metabolickými chorobami souvisejícími s dětskou obezitou. Naproti tomu kapitola zaměřená na epidemiologické aspekty se zabývá rizikovými faktory dětské obezity a současnými přístupy k prevenci dětské obezity.
Klíčová slova:
dětská obezita – epidemiologie – prevence – rizikové faktory – COVID-19 – endokrinní role – metabolická role
Zdroje
1. WHO. Report of the Commission on Ending Childhood Obesity. Implantation plan: executive summary. Geneva: World Health Organization; 2017 (WHO/NMH/PND/ ECHO/17.1). Licence: CC BY-NC-SA 3.0 IGO.
2. Cole T. J., Freeman J. V., Preece M. A. Body mass index reference curves for the UK, 1990. Arch. Dis. Child. 1995; 73(1), 25–29.
3. Cole T. J., Bellizzi M. C., Flegal K. M., Dietz W. H. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320(7244), 1240.
4. Herbert A., Gerry N. P., McQueen M. B., et al. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312(5771), 279–283.
5. Mejıa-Benıtez M. A., Bonnefond A., Yengo L., et al. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children. Diabetologia 2015; 58(2), 290–294.
6. Burke V., Beilin L. J., Dunbar D. Family lifestyle and parental body mass index as predictors of body mass index in Australian children: a longitudinal study. Int. J. Obes. Relat. Metab. Disord. 2001; 25(2), 147–157.
7. Isong I. A., Rao S. R. Bind M. A., et al. Racial and ethnic disparities in early childhood obesity. Pediatrics 2018; 141(1), pii: e20170865.
8. Min J., Wen X., Xue H., Wang Y. Ethnic disparities in childhood BMI trajectories and obesity and potential causes among 29,250 US children: Findings from the Early Childhood Longitudinal Study-Birth and Kindergarten Cohorts. Int. J. Obes. (London) 2018; 42(9), 1661–1670.
9. Guerrero A. D., Mao C., Fuller B., et al. Racial and Ethnic Disparities in Early Childhood Obesity: Growth Trajectories in Body Mass Index. J. Racial Ethn. Health Disparities 2016; 3(1), 129–137.
10. Zilanawala A., Davis-Kean P., Nazroo J., et al. Race/ ethnic disparities in early childhood BMI, obesity and overweight in the United Kingdom and United States. Int. J. Obes. 2015; 39(3), 520–911.
11. Hawkins S. S., Cole T. J., Law C. Millennium Cohort Study Child Health Group. An ecological systems approach to examining risk factors for early childhood overweight: findings from the UK Millennium Cohort Study. J. Epidemiol. Community Health 2009; 63(2), 147–155.
12. Lombardo F. L., Spinelli A., Lazzeri G., et al. Severe obesity prevalence in 8- to 9-year-old Italian children: a large population-based study. Eur. J. Clin. Nutr. 2015; 69(5), 603–608.
13. Brophy S., Cooksey R., Gravenor M. B., et al. Risk factors for childhood obesity at age 5: analysis of the Millennium Cohort Study. BMC Public Health 2009; 9, 467.
14. Ali A. T., Crowther N. J. Factors predisposing to obesity: A review of the literature. JEMDSA 2009; 14(2), 81–84.
15. Maffeis C., Grezzani A., Perrone L., Del Giudice E. M., Saggese G., Tatò L. Could the savory taste of snacks be a further risk factor for overweight in children? J. Pediatr. Gastroenterol. Nutr. 2008; 46(4), 429–437.
16. Eloranta A. M., Lindi V., Schwab U., et al. Dietary factors associated with overweight and body adiposity in Finnish children aged 6–8 years: the PANIC Study. Int. J. Obes. (London), 2012; 36(7), 950–955.
17. Rios-Castillo I., Cerezo, S., Corvalán C., et al. Risk factors during the prenatal period and the first year of life associated with overweight in 7-year-old low-income Chilean children. Matern. Child. Nutr. 2015; 11(4), 595– 605.
18. Tchoubi S., Sobngwi-Tambekou J., Noubiap J. J., et al. Prevalence and risk factors of overweight and obesity among children aged 6-59 months in Cameroon: A multistage, stratified cluster sampling nationwide survey. PLoS One 2015; 10(12), e0143215.
19. Zhang J., Himes J. H., Guo Y., et al. Birth weight, growth and feeding pattern in early infancy predict overweight/ obesity status at two years of age: a birth cohort study of Chinese infants. PLoS One 2013; 8(6), e64542.
20. Tremblay M. S., Willms J. D. Is the Canadian childhood obesity epidemic related to physical inactivity? Int. J. Obes. Relat. Metab. Disord. 2003; 27(9), 1100–1105.
21. Shi Y., De Groh M., Morrison H. Perinatal and early childhood factors for overweight and obesity in young Canadian children. Can. J. Public Health 2013; 104(1), e69–74.
22. Carson V., Tremblay M. S., Chastin S. F. M. Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among Canadian preschool-aged children using compositional analyses. BMC Public Health 2017; 17(Suppl 5), 848.
23. Hunsberger M., Lanfer A., Reeske A., et al. Infant feeding practices and prevalence of obesity in eight European countries – the IDEFICS study. Public Health Nutr. 2013; 16(2), 219–227.
24. Forbes J. D., Azad M. B., Vehling L., et al. association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 2018; 172(7), e181161.
25. Oken E., Kleinman K. P., Belfort M. B., et al. Associations of gestational weight gain with short- and longer- term maternal and child health outcomes. Am. J. Epidemiol. 2009; 170(2), 173–180.
26. Battista M. C., Hivert M. F., Duval K., et al. Intergenerational cycle of obesity and diabetes: how can we reduce the burdens of these conditions on the health of future generations? Exp. Diabetes Res. 2011; 2011, 596060.
27. Mitanchez D., Yzydorczyk C., Siddeek B., et al. The offspring of the diabetic mother-short- and long-term implications. Best Pract. Res. Clin. Obstet. Gynaecol. 2015; 29(2), 256–269.
28. Cox R., Skouteris H., Rutherford L., et al. Television viewing, television content, food intake, physical activity and body mass index: a cross-sectional study of preschool children aged 2–6 years. Health Promot. J. Austr. 2012; 23(1), 58–62.
29. Alghadir A. H., Gabr S. A., Iqbal Z. A. Television watching, diet and body mass index of school children in Saudi Arabia. Pediatr. Int. 2016; 58(4), 290–294.
30. Merten M. J., Williams A. L., Shriver L. H. Breakfast consumption in adolescence and young adulthood: parental presence, community context, and obesity. J. Am. Diet. Assoc. 2009; 109(8), 1384–1391.
31. Affenito S. G., Thompson D. R., Barton B. A., et al. Breakfast consumption by African-American and white adolescent girls correlates positively with calcium and fiber intake and negatively with body mass index. J. Am. Diet. Assoc. 2005; 105(6), 938–945.
32. Reinehr T., Hinney A., de Sousa G., et al. Definable somatic disorders in overweight children and adolescents. J. Pediatr. 2007; 150, 613.
33. Reilly J. J., Armstrong J., Dorosty A. R., et al. Early life risk factors for obesity in childhood: cohort study. BMJ 2005; 330(7504), 1357–1363.
34. Bammann K., Peplies J., de Henauw S., et al. Early life course risk factors for childhood obesity: the IDEFICS case-control study. PLoS One 2014; 9(2), e86914.
35. Ngan H. T. D., Tuyen L. D., Phu P. V., et al. childhood overweight and obesity amongst primary school children in Hai Phong City, Vietnam. Asia Pac. J. Clin. Nutr. 2018; 27(2), 399–405.
36. Mitchell J. A., Dowda M., Pate R. R., et al. Physical activity and pediatric obesity: a quantile regression analysis. Med. Sci. Sports Exerc. 2017; 49(3), 466–473.
37. Yan J., Liu L., Zhu Y., et al. The association between breastfeeding and childhood obesity: a meta-analysis. BMC Public Health 2014; 14, 1267.
38. Hesketh K., Waters E., Green J., et al. Healthy eating, activity and obesity prevention: a qualitative study of parent and child perceptions in Australia. Health Promot. Int. 2005; 20(1), 19–26.
39. Lazarou C., Matalas A. L. Breakfast intake is associated with nutritional status, Mediterranean diet adherence, serum iron and fasting glucose: the CY Families study. Public Health Nutr. 2015; 18(7), 1308–1316.
40. Tognon G., Hebestreit A., Lanfer A., et al. Mediterranean diet, overweight and body composition in children from eight European countries: cross-sectional and prospective results from the IDEFICS study. Nutr. Metab. Cardiovasc. Dis. 2014; 24(2), 205–213.
41. Bertoli S., Leone A., Vignati L., et al. Adherence to the Mediterranean diet is inversely associated with visceral abdominal tissue in Caucasian subjects. Clin. Nutr. 2015; 34(6), 1266–1272.
42. Kelishadi R., Mirmoghtadaee P., Najafi H., et al. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J. Res. Med. Sci. 2015; 20(3), 294–307.
43. Morandi A., Maschio M., Marigliano M., et al. Screening for impaired glucose tolerance in obese children and adolescents: a validation and implementation study. Pediatr. Obes. 2014; 9(1): 17–25.
44. Temneanu O. R., Trandafir, L. M., Purcarea M. R. Type 2 diabetes mellitus in children and adolescents: a relatively new clinical problem within pediatric practice. J. Med. Life 2016; 9(3), 235–239.
45. Manco M., Nobili V., Alisi A., et al. Arterial stiffness, thickness and association to suitable novel markers of risk at the origin of cardiovascular disease in obese children. Int. J. Med. Sci. 2017; 14(8), 711–720.
46. Bout-Tabaku S., Shults J., Zemel B. S., et al. obesity is associated with greater valgus knee alignment in pubertal children, and higher body mass index is associated with greater variability in knee alignment in girls. J. Rheumatol. 2015; 42(1), 126–133.
47. Félix D. R., Costenaro F., Gottschall C. B., et al. Non-alcoholic fatty liver disease (Nafld) in obese children- effect of refined carbohydrates in diet. BMC Pediatr. 2016; 16(1), 187.
48. Pinola P., Lashen H., Bloigu A., et al. Menstrual disorders in adolescence: a marker for hyperandrogenaemia and increased metabolic risks in later life? Finnish general population- based birth cohort study. Hum. Reprod. 2012; 27(11), 3279–3286.
49. McCormack L. A., Laska M. N., Gray C., et al. Weight-related teasing in a racially diverse sample of sixth-grade children. J. Am. Diet. Assoc. 2011; 111(3), 431–436.
50. Bang K. S., Chae S. M., Hyun M. S., et al. The mediating effects of perceived parental teasing on relations of body mass index to depression and self-perception of physical appearance and global self-worth in children. J. Adv. Nurs. 2012; 68(12), 2646–2653.
51. Morales D. X., Prieto N., Grineski S. E., et al. Race/ ethnicity, obesity, and the risk of being verbally bullied: a National Multilevel Study. J. Racial Ethn. Health Disparities 2019; 6(2), 245–253.
52. Sutaria S., Devakumar D., Yasuda S. S., et al. Is obesity associated with depression in children? Systematic review and meta-analysis. Arch. Dis. Child. 2019; 104(1), 64–74.
53. Sobol-Goldberg S., Rabinowitz J. Association of childhood and teen school performance and obesity in young adulthood in the US National Longitudinal Survey of Youth. Prev. Med. 2016; 89, 57–63.
54. la Fauci G., Montalti M., di Valerio Z., et al. Obesity and COVID-19 in children and adolescents: reciprocal detrimental influence – systematic literature review and meta-analysis. Int. J. Environ. Res. Public Health 2022; 19, 7603.
55. Rundle A. G., Park Y., Herbstman J. B., Kinsey E. W., Wang Y. C. COVID-19-related school closings and risk of weight gain among children. Obesity (Silver Spring) 2020; 28(6), 1008–1009.
56. Carroll N., Sadowski A., Laila A., et al. The impact of COVID-19 on health behavior, stress, financial and food security among middle to high income Canadian families with young children. Nutrients 2020; 12(8).
57. de Luis Roman D. A., Izaola O., Primo Martin D., et al. effect of lockdown for COVID-19 on self-reported body weight gain in a sample of obese patients. Nutr. Hosp. 2020; 37(6), 1232–1237.
58. Grannell A., le Roux C. W., McGillicuddy D. I am terrified of something happening to me the lived experience of people with obesity during the COVID-19 pandemic. Clin Obes. 2020; 10(6), e12406.
59. Stavridou A., Kapsali E, Panagouli E, et al. obesity in children and adolescents during Covid-19 pandemic. Children (Basal) 2021; 8(2), 135.
60. Khan MA, Moverley Smith JE. “Covibesity” a new pandemic. Obes Med. 2020; 19, 100282.
61. Vallis M., Glazer S. Protecting individuals living with overweight and obesity: attitudes and concerns towards COVID-19 vaccination in Canada. Obesity (Silver Spring) 2021; 29(7), 1128–1137.
62. Wei Y. Y., Wang R. R., Zhang D. W., et al. Risk factors for severe COVID-19: Evidence from 167 hospitalised patients in Anhui, China. J. Infect. 2020; 81(1), e89–e92.
63. Simonnet A., Chetboun M., Poissy J., et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 2020; 28(7), 1195–1199.
64. Gregoire F. M., Smas C. M., Sul H. S. Understanding adipocyte differentiation. Physiol. Rev. 1998; 78(3), 783–809.
65. Ali A. T., Hochfeld W. E., Myburgh R., Pepper M. S. Adipocyte and adipogenesis. Eur. J. Cell Biol. 2013; 92(6–7), 229–236.
66. Muir L. A., Neeley C. K., Meyer K. A., et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity (Silver Spring) 2016; 24(3), 597–605.
67. Jo J., Gavrilova O., Pack S., et al. Hypertrophy and /or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 2009; 5(3), e1000324.
68. Ali A. T., Crowther N. J. Body fat distribution and insulin resistance. SAMJ 2005; 95(11), 878–880.
69. Ali A. T., Ferris W. F., Naran N. H., Crowther N. J. Insulin resistance in the control of body fat distribution: a new hypothesis. Horm. Metab. Res. 2011; 43(2), 77–80.
70. Landgraf K., Rockstroh D., Wanger I. V., et al. evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes 2015; 64(4), 1249–1261.
71. Satoh T. Molecular mechanism for the regulation of insulin stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int. J. Mol. Sci. 2014; 15(10), 18677–18692.
72. Guilherme A., Virbasius J. V, Puri V., Czech M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008; 9(5), 367–77.
73. Joe A. W. B., Yi L., Even Y., Vogl A. W., Rossi F. M. V. Depots- specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 2009; 27, 2563–2570.
74. Schorr M., Dichtel L. E., Gerweck A. V., Valera R. D., Torriani M., Miller K. K., Bredella M. A. Sex differences in body composition and association with cardiometabolic risk. Biol. Sex Differ. 2018; 9(1), 28.
75. Bacopoulou F., Efthymiou V., Landis G., Rentoumis A., Chrousos G. P. Waist circumference, waist-to-hip ratio and waist-to-height ratio reference percentiles for abdominal obesity among Greek adolescents. BMC Pediatr. 2015; 15, 50.
76. Kruger H. S., Faber M., Schutte A. E., Ellis S. M. A proposed cutoff point of waist-to-height ratio for metabolic risk in African township adolescents. Nutrition 2013; 29(3), 502–507.
77. Drolet R., Richard C., Sniderman A. D., et al. Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int. J. Obes. 2008; 32, 283–291.
78. Spalding K. L., Arner E., Westermark P. O., et al. Dynamics of fat cell turnover in humans. Nature 2008; 453, 783–787.
79. Jo J., Guo J., Liu T., Mullen S., Hall K. D., Cushman S. W., Periwal V. Hypertrophy-driven adipocyte death overwhelms recruitment under prolonged weight gain. Biophysical J. 2010; 99(11), 3535–3544.
80. Henriksson P., Sandborg J., Henstrom M., et al. Body composition, physical fitness and cardiovascular risk factors in 9-year-old children. Sci. Rep. 2022; 12, 2665.
81. Aris I. M., Rifas-Shiman S. L., Li L. J., et al. Patterns of body mass index milestones in early life and cardiometabolic risk in early adolescence. Int. J. Epidemiol. 2019; 48(1), 157–167.
82. Aarestrup J., Blond K., Vistisen D., Jørgensen M. E., Frimodt-Møller M., Jensen B. W., et al. Childhood body mass index trajectories and associations with adult-onset chronic kidney disease in Denmark: A population-based cohort study. PLoS Med. 2022; 19(9), e1004098.
83. Rhee C. M., Ahmadi S. F., Kalantar-Zadeh K. The dual roles of obesity in chronic kidney disease: A review of the current literature. Curr. Opin. Nephrol. Hypertens. 2016; 25(3), 208–216.
84. Berndt S. I., Gustafsson S., Mägi R., et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 2013; 45(5), 501–512.
85. Bradfield J. P., Taal H. R., Timpson N. J., et al. A genome- wide association meta-analysis identifies new childhood obesity loci. Nat. Genet. 2012; 44(5), 526–531.
86. Gillman M. W., Rifas-Shiman S., Berkey C. S., Field A. E., Colditz G. A. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 2003; 111(3), e221–226.
87. Oken E., Rifas-Shiman S. L., Field A. E., et al. Maternal gestational weight gain and offspring weight in adolescence. Obstet. Gynecol. 2008; 112(5), 999–1006.
88. Robinson E, Boyland E., Chisholm A., et al. Obesity, eating behavior and physical activity during COVID-19 lockdown: a study of UK adults. Appetite 2021; 156, 104853.
89. Lo J. C., Maring B., Chandra M., et al. prevalence of obesity and extreme obesity in children aged 3–5 years. Pediatr. Obes. 2014; 9(3), 167–175.
90. Boeke C. E., Oken E., Kleinman K. P., Rifas-Shiman S. L., Taveras E. M., Gillman M. W. Correlations among adiposity measures in school-aged children. BMC Pediatr. 2013; 13, 99.
91. Simmonds M., Llewellyn A., Owen C. G., Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes. Rev. 2016; 17(2), 95–107.
92. Nader P. R., O’Brien M., Houts R., et al. Identifying risk for obesity in early childhood. Pediatrics 2006; 118(3), e594–601.
93. The N. S., Suchindran C., North K. E., Popkin B. M., Gordon-Larsen P. Association of adolescent obesity with risk of severe obesity in adulthood. JAMA 2010; 304(18), 2042–2047.
94. Rooney B. L., Mathiason M. A., Schauberger C. W. Predictors of obesity in childhood, adolescence, and adulthood in a birth cohort. Matern. Child. Health J. 2011; 15(8), 1166–1175.
95. Power C., Lake J. K., Cole T. J. Body mass index and height from childhood to adulthood in the 1958 British born cohort. Am. J. Clin Nutr. 1997; 66, 1094–1101.
96. Gibbs B. B., Brach J. S., Byard T., et al. Reducing sedentary behavior versus increasing moderate-to-vigorous intensity physical activity in older adults. J. Aging Health 2017; 29(2), 247–267.
97. Adams J. P., Murphy P. G. Obesity in anaesthesia and intensive care. BJA 2000; 85, 91–108.
98. Mitchell J. A., Mattocks C., Ness A. R., et al. Sedentary behavior and obesity in a large cohort of children. Obesity (Silver Spring) 2009; 17(8), 1596–1602.
99. Hirschler V., Bugna J., Roque M., Gilligan T., Gonzalez C. Does low birth weight predict obesity/overweight and metabolic syndrome in elementary school children? Arch. Med. Res. 2008; 39(8), 796–802.
100. Reilly J. J., Armstrong J., Dorosty A. R., et al. Early life risk factors for obesity in childhood: cohort study. BMJ 2005; 330(7504), 1357.
101. Guo S. S., Chumlea W. C. Tracking of body mass index in children in relation to overweight in adulthood. Am. J. Clin. Nute. 1999; 70(1), 145S–148S.
102. Fernández-Alvira J. M., Mouratidou T., Bammann K., et al. Parental education and frequency of food consumption in European children: the IDEFICS study. Public Health Nutr. 2013; 16(3), 487–498.
103. Hoang N. T. D., Orellana L., Le T. D., et al. Anthropometric status among 6¯9-year-old school children in rural areas in Hai Phong City, Vietnam. Nutrients 2018; 10(10), pii: E1431.
104. Ensenauer R., Brandlhuber L., Burgmann M., et al. Obese nondiabetic pregnancies and high maternal glycated hemoglobin at delivery as an indicator of offspring and maternal postpartum risks: The Prospective PEACHES Mother-Child Cohort. Clin. Chem. 2015; 61(11), 1381–1390.
105. Maffoni S., de Giuseppe R., Stanford F. C., Cena H. Folate status in women of childbearing age with obesity: a review. Nutr. Res. Rev. 2017; 30(2), 265–271.
106. Shapiro A. L., Kaar J. L., Crume T. L., et al. Maternal diet quality in pregnancy and neonatal adiposity: the Healthy Start Study. Int. J. Obes. (London) 2016; 40(7), 1056–1062.
107. Aris I. M., Bernard J. Y., Chen L. W., et al. Infant body mass index peak and early childhood cardiometabolic risk markers in multi-ethnic Asian birth cohort. Int. J. Epidemiol. 2017; 46, 513–525.
108. Whitaker R. C., Wright J. A. Pepe M. S., Seidel K. D., Dietz W. H. Predicting obesity in young adulthood from childhood and parental obesity. New Engl. J. Med. 1997; 337(13), 869–873.
109. Jiang J., Rosenqvist U., Wang H., Greiner T., Ma Y., Toschke A. M. Risk factors for overweight in 2- to 6-year-old children in Beijing, China. Int. J. Pediatr. Obes. 2006; 1(2), 103–108.
110. Johannsen D. L., Johannsen N. M., Specker B. L. Influence of parents’ eating behaviours and child feeding practices on children’s weight status. Obesity (Silver Spring) 2006; 14(3), 431–439.
111. Tao Z. L., Zhong W. F. The correlation of Chinese mothers’ eating attitudes and psychological characteristics with their children’s eating attitudes, as well as the gender effect on eating attitudes of children. Eat. Weight Disord. 2008; 13, 149–156.
112. Biehl A., Hovengen R., Grøholt E. K., Hjelmesæth J., Strand B. H., Meyer H. E. Parental marital status and childhood overweight and obesity in Norway: a nationally representative cross-sectional study. BMJ Open 2014; 4(6), e004502.
113. Dennison B. A., Erb T. A., Jenkins P. L. Television viewing and television in bedroom associated with overweight risk among low-income preschool children. Pediatrics 2002; 109(6), 1028–1035.
114. Coulthard H., Sharps M., Cunliffe L., van den Tol A. Eating in the lockdown during the Covid 19 pandemic; self-reported changes in eating behaviour, and associations with BMI, eating style, coping and health anxiety. Appetite 2022; 161, 105082.
115. Berenson G. S., Srinivasan S. R., Bao W., Newman W. P., Tracy R. E., Wattigney W. A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa heart study. New Engl. J. Med. 1998; 338, 1650–1656.
116. Wang J., Zhu Y., Jing J., et al. Relationship of BMI to the incidence of hypertension: a 4 years’ cohort study among children in Guangzhou, 2007–2011. BMC Public Health 2015; 15, 782.
117. Ali A. T., Al-ani O., Al-ani F., Guidozzi F. Polycystic ovary syndrome and metabolic disorders: A review of the literature. Afr. J. Reprod. Health 2022; 26(8), 89–99.
118. Feldstein A. E., Charatcharoenwitthaya P., Treeprasertsuk S., Benson J. T., Enders F. B., Angulo P. The natural history of non-alcoholic fatty liver disease in children: a follow-up study up to 20 years. Gut 2009; 58, 1538–1544.
119. Jones M. H., Roncada C., Fernandes M. T. C., et al. Asthma and obesity in children are independently associated with airway dysanapsis. Front. in Pediatr. 2017; 5, 270.
120. Alonso-Álvarez M. L., Cordero-Guevara J. A., Terán-Santos J., et al. Obstructive sleep apnea in obese community- dwelling children: the NANOS study. Sleep 2014; 37(5), 943–949.
121. Schwimmer J. B., Burwinkle T. M., Varni J. W. Health related quality of life of severely obese children and adolescents. JAMA 2003; 289(14), 1813–1819.
122. Goodman E., Whitaker R. C. A prospective study of the role of depression in the development and persistence of adolescent obesity. Pediatrics 2002; 110, 497–504.
123. Kosaraju R., Guesdon W., Crouch M. J., et al. B cell activity is impaired in human and mouse obesity and is responsive to an essential fatty acid upon murine influenza infection. J. Immunol. 2017; 198(12), 4738–4752.
124. Milner J. J., Beck M. A. The impact of obesity on the immune response to infection. Proc. Nutr. Soc. 2012; 71(2), 298–306.
125. Zachariah P., Johnson C. L., Halabi K. C., et al. Epidemiology, clinical features, and disease severity in patients with Coronavirus Disease 2019 (COVID-19) in a children’s hospital in New York City, New York. JAMA Pediatrics 2020; 174(10), e202430.
126. Lighter J., Phillips M., Hochman S., Sterling S., Johnson D., Francois F., Stachel A. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin. Infect. Dis. 2020; 71(15), 896–897.
127. Smith K. J., Gall S. L., McNaughton S. A., Blizzard L., Dwyer T., Venn A. J. Skipping breakfast: Longitudinal associations with cardiometabolic risk factors in the Childhood Determinants of Adult Health Study. Am. J. Clin. Nutr. 2010; 92, 1316–1325.
128. Mekary R. A., Giovannucci E., Willett W. C., van Dam R. M., Hu F. B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012; 95, 1182–1189.
129. Kobayashi F., Ogata H., Omi N., Nagasaka S., Yamaguchi S., Hibi M., Tokuyama K. Effect of breakfast skipping on diurnal variation of energy metabolism and blood glucose. Obes. Res. Clin. Pr. 2014; 8, e201–e298.
Štítky
Farmacie FarmakologieČlánek vyšel v časopise
Česká a slovenská farmacie
2023 Číslo 1
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- O krok blíže k pochopení efektu placeba při léčbě bolesti
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
Nejčtenější v tomto čísle
- Nové trendy v terapii pokročilých štádií parkinsonovej choroby
- Dětská obezita: příčiny, důsledky a prevence
- Příspěvek k pojmu polypragmazie II. Preskripce a užívání léčiv
- Rozhodovanie o vstupe a konkurencia na trhu lekární: Prípadová štúdia voľnopredajných liekov a deregulácie vlastníctva