#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Telacebek (Q203): Vynára sa na obzore nové efektívne a bezpečné antituberkulotikum?


Autoři: Ivan Malík;  Jozef Čižmárik;  Gustáv Kováč;  Mária Pecháčová;  Lucia Hudecova
Vyšlo v časopise: Čes. slov. Farm., 2021; 70, 164-171
Kategorie: Přehledy a odborná sdělení
doi: https://doi.org/https://doi.org/10.5817/CSF2021-5-164

Souhrn

Vysoká prevalencia rôznych foriem rezistentnej tuberkulózy (drug-resistant tuberculosis – DR-TB), vrátane multirezistentnej tuberkulózy (multidrug-resistant tuberculosis – MDR-TB) a extenzívne rezistentnej tuberkulózy (extensively drug-resistant tuberculosis – XDR-TB), ktoré sú zapríčinené rezistentnými patogénmi Mycobacterium tuberculosis, rezultuje do silnejúcej hrozby terapeutickej neefektívnosti antituberkulotík (anti-TB) prvej línie. Imperatívom je preto projekcia nových vysokoúčinných (syntetických) liečiv proti senzitívnym a aj rezistentným kmeňom mykobaktérií spôsobujúcim TB. V tomto kontexte je mimoriadne zaujímavé vedecky skúmať rôzne heterocykly ako perspektívne kľúčové štruktúry pre projekciu, vývoj a optimalizovanie takýchto anti-TB-liečiv. Telacebek (Q203; TCB), molekula obsahujúca imidazo[1,2-a]- pyridín-3-karboxamidový (IPA) štruktúrny motív, je považovaný za veľmi sľubnú anti-TB-substanciu, ktorá sa vyznačuje unikátnym mechanizmom pôsobenia. Táto zlúčenina blokuje oxidatívnu fosforyláciu mykobaktérií inhibíciou ich dýchacieho reťazca tak, že interferuje so špecifickou podjednotkou, cytochrómom b (QcrB), ktorý je súčasťou transmembránovej bc1 menachinol- cytochróm c oxidoreduktázy. Tento komplex je kľúčovým komponentom podieľajúcim sa na transmembránovom transporte elektrónov z menachinolu na ďalšiu špecifickú podjednotku, cytochróm c (QcrC). Schopnosť mykobaktérií syntetizovať adenozín-5´-trifosfát je potom limitovaná a súčasne sú významne obmedzené ich možnosti generovať energiu. TCB efektívne pôsobí proti susceptibilným, MDR- a aj XDR-kmeňom M. tuberculosis. V publikácii možno nájsť stručné vysvetlenie mechanizmu účinku zlúčenín obsahujúcich IPA-fragment a aj hodnotenie vzťahov medzi ich štruktúrou a anti-TB-aktivitou. Mimoriadna pozornosť je venovaná významu jednotlivých štruktúrnych častí TCB z pohľadu zachovania (alebo dokonca ďalšieho zlepšenia) výhodných farmakodynamických, farmakokinetických a/alebo toxikologických vlastností. Vysoká lipofilita TCB by mohla byť považovaná za jednu z kľúčových fyzikálno-chemických charakteristík, ktoré pozitívne ovplyvňujú anti-TB-pôsobenie tohto liečiva. V januári 2021 vstúpil TCB aj do fázy II klinického skúšania orientovaného na liečbu ochorenia COVID-19 (Coronavirus Disease-19), ktorého pôvodcom je koronavírus 2 vyvolávajúci ťažký akútny respiračný syndróm (Severe Acute Respiratory Syndrome Coronavirus 2). 

Klíčová slova:

Mycobacterium tuberculosis – tuberkulóza rezistentná voči liečivám – imidazo[1,2-a]- pyridín-3-karboxamidy – telacebek (Q203) – dýchací reťazec


Zdroje

1. Barbier M., Wirth T. The evolutionary history, demography, and spread of the Mycobacterium tuberculosis Complex. Microbiol. Spectr. 2016; 4, art. no. TBTB2- 0008-2016 (21 pp.). doi: 10.1128/microbiolspec.TBTB2- 0008-2016

2. Pezzella A. T. History of pulmonary tuberculosis. Thorac. Surg. Clin. 2019; 29, 1–17. doi: 10.1016/j.thorsurg. 2018.09.002

3. World Health Organization. Global Tuberculosis Report 2020. Geneva: World Health Organization 2020.

4. Chetty S., Ramesh M., Singh-Pillay A., Soliman M. E. S. Recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett. 2017; 27, 370– 386. doi: 10.1016/j.bmcl.2016.11.084

5. Khawbung J. L., Nath D., Chakraborty S. Drug resistant tuberculosis: A review. Comp. Immunol. Microbiol. Infect. Dis. 2021; 74, art. no. 101574 (9 pp.). doi: 10.1016/j.cimid. 2020.101574

6. Dheda K., Gumbo T., Gandhi N. R., Murray M., Theron G., Udwadia Z., Migliori G. B., Warren R. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet. Respir. Med. 2014; 2, 321–338. doi: 10.1016/S2213-2600(14)70031-1

7. Zhan L., Wang J., Wang L., Quin Ch. The correlation of drug resistance and virulence in Mycobacterium tuberculosis. Biosaf. Health 2020; 2, 18–24. doi: 10.1016/j.bsheal. 2020.02.004

8. Abrahams K. A., Cox J. A. G., Spivey V. L., Loman N. J., Pallen M. J., Constantinidou Ch., Fernández R., Alemparte C., Remuiñán M. J., Barros D., Ballell L., Besra G. S. Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB. PLoS One 2012; 7, art. no. e52951 (10 pp.). doi: 10.1371/journal.pone.0052951

9. Moraski G. C., Markley L. D., Hipskind P. A., Boshoff H., Cho S., Franzblau S. G., Miller M. J. Advent of imidazo[ 1,2-a]pyridine-3-carboxamides with potent multiand extended drug resistant antituberculosis activity. ACS Med. Chem. Lett. 2011; 2, 466–470. doi: 10.1021/ ml200036r

10. Moraski G. C., Markley L. D., Cramer J., Hipskind P. A., Boshoff H., Bailey M. A., Alling T., Ollinger J., Parish T., Miller M. J. Advancement of imidazo[1,2-a]pyridines with improved pharmacokinetics and nM activity vs. Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2013; 4, 675–679. doi: 10.1021/ml400088y

11. Wu Zh., Lu Y., Li L., Zhao R., Wang B., Lv K., Liu M., You X. Identification of N-(2-phenoxyethyl)imidazo[1,2-a]pyridine- 3-carboxamides as new antituberculosis agents. ACS Med. Chem. Lett. 2016; 7, 1130–1133. doi: 10.1021/ acsmedchemlett.6b00330

12. Deep A., Kaur Bhatia R., Kaur R., Kumar S., Kumar Jain U., Singh H., Batra S., Kaushik D., Kishore Deb P. Imidazo[ 1,2-a]pyridine scaffold as prospective therapeutic agents. Curr. Top. Med. Chem. 2017; 17, 238–250. doi: 10. 2174/1568026616666160530153233

13. Bahuguna A., Rawat S., Rawat D. S. QcrB in Mycobacterium tuberculosis: The new drug target of antitubercular agents. Med. Res. Rev. 2021; article in press (7 pp.). doi: 10.1002/med.21779

14. Li Q., Lu X. New antituberculosis drugs targeting the respiratory chain. Chin. Chem. Lett. 2020; 31, 1357–1365. doi: 10.1016/j.cclet.2020.04.007

15. Gong H., Li J., Xu A., Tang Y., Ji W., Gao R., Wang S., Yu L., Tian C., Li J., Yen H.-Y., Lam S. M., Shui G., Yang X., Sun Y., Li X., Jia M., Yang Ch., Jiang B., Lou Zh., Robinson C. V., Wong L.-L., Guddat L. W., Sun F., Wang Q., Rao Z. An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science 2018; 362, art. no. eaat8923 (12 pp.). doi: 10.1126/science. aat8923

16. Beites T., O’Brien K., Tiwari D., Engelhart C. A., Walters S., Andrews J., Yang H.-J., Sutphen M. L., Weiner D. M., Dayao E. K., Zimmerman M., Prideaux B., Desai P. V., Masquelin T., Via L. E., Dartois V., Boshoff H. I., Barry C. E., Ehrt S., Schnappinger, D. Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat. Commun. 2019; 10, art. no. 4970 (12 pp.). doi: 10.1038/s41467-019- 12956-2

17. Lee B. Sh., Sviriaeva E., Pethe K. Targeting the cytochrome oxidases for drug development in mycobacteria. Prog. Biophys. Mol. Biol. 2020; 152, 45–54. doi: 10.1016/j. pbiomolbio.2020.02.001

18. Borisov V. B., Gennis R. B., Hemp J., Verkhovsky M. I. The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta 2011; 1807, 1398–1413. doi: 10.1016/j.bbabio.2011.06.016

19. Berney M., Cook G. M. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PloS One 2010; 5, art. no. e8614 (11 pp.). doi: 10.1371/journal.pone.0008614

20. Mascolo L., Bald D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. Prog. Biophys. Mol. Biol. 2020; 152, 55–63. doi: 10.1016/j.pbiomolbio.2019.11.002

21. Pethe K., Bifani P., Jang J., Kang S., Park S., Ahn S., Jiricek J., Jung J., Jeon H. K., Cechetto J., Christophe T., Lee H., Kempf M., Jackson M., Lenaerts A. J., Pham H., Jones V., Seo M. J., Kim Y. M., Seo M., Seo J. J., Park D., Ko Y., Choi I., Kim R., Kim S. Y., Lim S., Yim S.-A., Nam J., Kang H., Kwon H., Oh Ch.-T., Cho Y., Jang Y., Kim J., Chua A., Tan B. H., Nanjundappa M. B., Rao S. P. S., Barnes W. S., Wintjens R., Walker J. R., Alonso S., Lee S., Kim J., Oh S., Oh T., Nehrbass U., Han S.-J., No Z., Lee J., Brodin P., Cho S.-N., Nam K., Kim J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med. 2013; 19, 1157–1160. doi: 10.1038/nm.3262

22. Gao X., Wen X., Yu Ch., Esser L., Tsao S., Quinn B., Zhang L., Yu L., Xia D. The crystal structure of mitochondrial cytochrome bc1 in complex with famoxadone: the role of aromatic-aromatic interaction in inhibition. Biochemistry 2002; 41, 11692–11702. doi: 10.1021/ bi026252p

23. Kessl J. J., Lange B. B., Merbitz-Zahradnik T., Zwicker K., Hill P., Meunier B., Pálsdóttir H., Hunte C., Meshnick S., Trumpower L. Molecular basis for atovaquone binding to the cytochrome bc1 complex. J. Biol. Chem. 2003; 278, 31312–31318. doi: 10.1074/jbc.M304042200

24. Lu P., Asseri A. H., Kremer M., Maaskant J., Ummels R., Lill H., Bald D. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Sci. Rep. 2018; 8, art. no. 2625 (7 pp.). doi: 10.1038/s41598-018-20989-8

25. Arora K., Ochoa-Montaño B., Tsang P. S., Blundell T. L., Dawes S. S., Mizrahi V., Bayliss T., Mackenzie C. J., Cleghorn L. A. T., Ray P. C., Wyatt P. G., Uh E., Lee J., Barry 3rd C. E., Boshoff H. I. Respiratory flexibility in response to inhibition of cytochrome c oxidase in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014; 58, 6962–6965. doi: 10.1128/AAC.03486-14

26. Li X.-W., Herrmann J., Zang Y., Grellier P., Prado S., Müller R., Nay B. Synthesis and biological activities of the respiratory chain inhibitor aurachin D and new ring versus chain analogues. Beilstein J. Org. Chem. 2013; 9, 1551–1558. doi: 10.3762/bjoc.9.176

27. Kang S., Kim Y. M., Kim R. Y., Seo M. J., No Z., Nam K., Kim S., Kim J. Synthesis and structure-activity studies of side chain analogues of the anti-tubercular agent, Q203. Eur. J. Med. Chem. 2017; 125, 807–815. doi: 10.1016/j.ejmech. 2016.09.082

28. Kang S., Kim Y. M., Jeon H., Park S., Seo M. J., Lee S., Park D., Nam J., Lee S., Nam K., Kim S., Kim S. Synthesis and structure–activity relationships of novel fused ring analogues of Q203 as antitubercular agents. Eur. J. Med. Chem. 2017; 136, 420–427. doi: 10.1016/j.ejmech. 2017.05.021

29. Sellamuthu S., Bhat M. F., Kumar A., Singh, S. K. Phenothiazine: A better scaffold against tuberculosis. Mini Rev. Med. Chem. 2018; 18, 1442–1451. doi: 10.2174/1389 557517666170220152651

30. Appetecchia F., Consalvi S., Scarpecci C., Biava M., Poce G. SAR Analysis of small molecules interfering with energy-metabolism in Mycobacterium tuberculosis. Pharmaceuticals (Basel) 2020; 13, art. no. 227 (33 pp.). doi: 10.3390/ph13090227

31. Kang S., Kim R. Y., Seo M. J., Lee S., Kim Y. M., Seo M., Seo J. J., Ko Y., Choi I., Jang J., Nam J., Park S., Kang H., Kim H. J., Kim J., Ahn S., Pethe K., Nam K., No Z., Kim J. Lead optimization of a novel series of imidazo[1,2-a]- pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent. J. Med. Chem. 2014; 57, 5293–5305. doi: 10.1021/ jm5003606

32. Motamen S., Quinn R. J. Analysis of approaches to anti- tuberculosis compounds. ACS Omega 2020; 5, 28529– 28540. doi: 10.1021/acsomega.0c03177

33. Li L., Wang Ap., Wang B., Liu M., Lv K., Tao Z., Ma Ch., Ma X., Han B., Wang Ao., Lu Y. N-(2-Phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides containing various amine moieties: Design, synthesis and antitubercular activity. Chin. Chem. Lett. 2020; 31, 409–412. doi: 10.1016/j. cclet.2019.07.038

34. Wang H., Wang A., Gu J., Fu L., Lv K., Ma Ch., Tao Z., Wang B., Liu M., Guo H., Lu Y. Synthesis and antitubercular evaluation of reduced lipophilic imidazo[1,2-a]pyridine- 3-carboxamide derivatives. Eur. J. Med. Chem. 2019; 165, 11–17. doi: 10.1016/j.ejmech.2018.12.071

35. Fullam E., Young R. J. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs? RSC Med. Chem. 2021; 12, 43–56. doi: 10.1039/d0md00265h

36. Lipinski C. A. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016; 101, 34–41. doi: 10.1016/j.addr.2016.04.029

37. Veber D. F., Johnson S. R., Cheng H.-Y., Smith B. R., Ward K. W., Kopple K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002; 45, 2615–2623. doi: 10.1021/jm020017n

38. Machado D., Girardini M., Miveiros M., Pieroni M. Challenging the drug-likeness dogma for new drug discovery in tuberculosis. Front. Microbiol. 2018; 9, art. no. 1367 (23 pp.). doi: 10.3389/fmicb.2018.01367

39. No Z., Kim J., Brodin P., Seo M. J., Park E., Cechetto J., Jeon H., Genovesio A., Lee S., Kang S., Ewann F. A., Nam J. Y., Fenistein D. P. C., Christophe T., Contreras Dominguez M., Kim E., Heo J. Anti-infective pyrido(1,2-a)pyrimidines. PCT Publication No. WO 2011/085990 A1, 21 July 2011.

40. https://clinicaltrials.gov/ct2/show/NCT03563599 (18 January 2021)

41. de Jager V. R., Dawson R., van Niekerk Ch., Hutchings J., Kim J., Vanker N., van der Merwe L., Choi J., Nam K., Diacon A. H. Telacebec (Q203), a new antituberculosis agent. N. Engl. J. Med. 2020; 382, 1280–1281. doi: 10.1056/NEJMc1913327

42. Russian Venture Company. Maxwell Biotech Venture Fund’s portfolio company Infectex acquires exclusive rights to Qurient’s tuberculosis drug Q203. https://www.prnewswire.com/news-releases/maxwell- biotech-venture-funds-portfolio-company-infectex- acquires-exclusive-rights-to-qurients-tuberculosis- drug-q203-245354721.html (12 March 2021).

43. Volkova A. Infectex successfully completed phase 1 clinical trials of Q203 drug for treating the tuberculosis. https://www.rvc.ru/en/press-service/massmedia/rvc/ 108385/ (18 January 2021).

44. Lee B. S., Kalia N. P., Jin X. E. F., Hasenoehrl E. J., Berney M., Pethe K. Inhibitors of energy metabolism interfere with antibiotic-induced death in mycobacteria. J. Biol. Chem. 2019; 294, 1936–1943. doi: 10.1074/jbc. RA118.005732

45. Telacebec – Qurient Co. https://adisinsight.springer. com/drugs/800039962 (12 March 2021).

Štítky
Farmacie Farmakologie

Článek vyšel v časopise

Česká a slovenská farmacie

Číslo 5

2021 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#