Telacebek (Q203): Vynára sa na obzore nové efektívne a bezpečné antituberkulotikum?
Autoři:
Ivan Malík; Jozef Čižmárik; Gustáv Kováč; Mária Pecháčová; Lucia Hudecova
Vyšlo v časopise:
Čes. slov. Farm., 2021; 70, 164-171
Kategorie:
Přehledy a odborná sdělení
doi:
https://doi.org/https://doi.org/10.5817/CSF2021-5-164
Souhrn
Vysoká prevalencia rôznych foriem rezistentnej tuberkulózy (drug-resistant tuberculosis – DR-TB), vrátane multirezistentnej tuberkulózy (multidrug-resistant tuberculosis – MDR-TB) a extenzívne rezistentnej tuberkulózy (extensively drug-resistant tuberculosis – XDR-TB), ktoré sú zapríčinené rezistentnými patogénmi Mycobacterium tuberculosis, rezultuje do silnejúcej hrozby terapeutickej neefektívnosti antituberkulotík (anti-TB) prvej línie. Imperatívom je preto projekcia nových vysokoúčinných (syntetických) liečiv proti senzitívnym a aj rezistentným kmeňom mykobaktérií spôsobujúcim TB. V tomto kontexte je mimoriadne zaujímavé vedecky skúmať rôzne heterocykly ako perspektívne kľúčové štruktúry pre projekciu, vývoj a optimalizovanie takýchto anti-TB-liečiv. Telacebek (Q203; TCB), molekula obsahujúca imidazo[1,2-a]- pyridín-3-karboxamidový (IPA) štruktúrny motív, je považovaný za veľmi sľubnú anti-TB-substanciu, ktorá sa vyznačuje unikátnym mechanizmom pôsobenia. Táto zlúčenina blokuje oxidatívnu fosforyláciu mykobaktérií inhibíciou ich dýchacieho reťazca tak, že interferuje so špecifickou podjednotkou, cytochrómom b (QcrB), ktorý je súčasťou transmembránovej bc1 menachinol- cytochróm c oxidoreduktázy. Tento komplex je kľúčovým komponentom podieľajúcim sa na transmembránovom transporte elektrónov z menachinolu na ďalšiu špecifickú podjednotku, cytochróm c (QcrC). Schopnosť mykobaktérií syntetizovať adenozín-5´-trifosfát je potom limitovaná a súčasne sú významne obmedzené ich možnosti generovať energiu. TCB efektívne pôsobí proti susceptibilným, MDR- a aj XDR-kmeňom M. tuberculosis. V publikácii možno nájsť stručné vysvetlenie mechanizmu účinku zlúčenín obsahujúcich IPA-fragment a aj hodnotenie vzťahov medzi ich štruktúrou a anti-TB-aktivitou. Mimoriadna pozornosť je venovaná významu jednotlivých štruktúrnych častí TCB z pohľadu zachovania (alebo dokonca ďalšieho zlepšenia) výhodných farmakodynamických, farmakokinetických a/alebo toxikologických vlastností. Vysoká lipofilita TCB by mohla byť považovaná za jednu z kľúčových fyzikálno-chemických charakteristík, ktoré pozitívne ovplyvňujú anti-TB-pôsobenie tohto liečiva. V januári 2021 vstúpil TCB aj do fázy II klinického skúšania orientovaného na liečbu ochorenia COVID-19 (Coronavirus Disease-19), ktorého pôvodcom je koronavírus 2 vyvolávajúci ťažký akútny respiračný syndróm (Severe Acute Respiratory Syndrome Coronavirus 2).
Klíčová slova:
Mycobacterium tuberculosis – tuberkulóza rezistentná voči liečivám – imidazo[1,2-a]- pyridín-3-karboxamidy – telacebek (Q203) – dýchací reťazec
Zdroje
1. Barbier M., Wirth T. The evolutionary history, demography, and spread of the Mycobacterium tuberculosis Complex. Microbiol. Spectr. 2016; 4, art. no. TBTB2- 0008-2016 (21 pp.). doi: 10.1128/microbiolspec.TBTB2- 0008-2016
2. Pezzella A. T. History of pulmonary tuberculosis. Thorac. Surg. Clin. 2019; 29, 1–17. doi: 10.1016/j.thorsurg. 2018.09.002
3. World Health Organization. Global Tuberculosis Report 2020. Geneva: World Health Organization 2020.
4. Chetty S., Ramesh M., Singh-Pillay A., Soliman M. E. S. Recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett. 2017; 27, 370– 386. doi: 10.1016/j.bmcl.2016.11.084
5. Khawbung J. L., Nath D., Chakraborty S. Drug resistant tuberculosis: A review. Comp. Immunol. Microbiol. Infect. Dis. 2021; 74, art. no. 101574 (9 pp.). doi: 10.1016/j.cimid. 2020.101574
6. Dheda K., Gumbo T., Gandhi N. R., Murray M., Theron G., Udwadia Z., Migliori G. B., Warren R. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet. Respir. Med. 2014; 2, 321–338. doi: 10.1016/S2213-2600(14)70031-1
7. Zhan L., Wang J., Wang L., Quin Ch. The correlation of drug resistance and virulence in Mycobacterium tuberculosis. Biosaf. Health 2020; 2, 18–24. doi: 10.1016/j.bsheal. 2020.02.004
8. Abrahams K. A., Cox J. A. G., Spivey V. L., Loman N. J., Pallen M. J., Constantinidou Ch., Fernández R., Alemparte C., Remuiñán M. J., Barros D., Ballell L., Besra G. S. Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB. PLoS One 2012; 7, art. no. e52951 (10 pp.). doi: 10.1371/journal.pone.0052951
9. Moraski G. C., Markley L. D., Hipskind P. A., Boshoff H., Cho S., Franzblau S. G., Miller M. J. Advent of imidazo[ 1,2-a]pyridine-3-carboxamides with potent multiand extended drug resistant antituberculosis activity. ACS Med. Chem. Lett. 2011; 2, 466–470. doi: 10.1021/ ml200036r
10. Moraski G. C., Markley L. D., Cramer J., Hipskind P. A., Boshoff H., Bailey M. A., Alling T., Ollinger J., Parish T., Miller M. J. Advancement of imidazo[1,2-a]pyridines with improved pharmacokinetics and nM activity vs. Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2013; 4, 675–679. doi: 10.1021/ml400088y
11. Wu Zh., Lu Y., Li L., Zhao R., Wang B., Lv K., Liu M., You X. Identification of N-(2-phenoxyethyl)imidazo[1,2-a]pyridine- 3-carboxamides as new antituberculosis agents. ACS Med. Chem. Lett. 2016; 7, 1130–1133. doi: 10.1021/ acsmedchemlett.6b00330
12. Deep A., Kaur Bhatia R., Kaur R., Kumar S., Kumar Jain U., Singh H., Batra S., Kaushik D., Kishore Deb P. Imidazo[ 1,2-a]pyridine scaffold as prospective therapeutic agents. Curr. Top. Med. Chem. 2017; 17, 238–250. doi: 10. 2174/1568026616666160530153233
13. Bahuguna A., Rawat S., Rawat D. S. QcrB in Mycobacterium tuberculosis: The new drug target of antitubercular agents. Med. Res. Rev. 2021; article in press (7 pp.). doi: 10.1002/med.21779
14. Li Q., Lu X. New antituberculosis drugs targeting the respiratory chain. Chin. Chem. Lett. 2020; 31, 1357–1365. doi: 10.1016/j.cclet.2020.04.007
15. Gong H., Li J., Xu A., Tang Y., Ji W., Gao R., Wang S., Yu L., Tian C., Li J., Yen H.-Y., Lam S. M., Shui G., Yang X., Sun Y., Li X., Jia M., Yang Ch., Jiang B., Lou Zh., Robinson C. V., Wong L.-L., Guddat L. W., Sun F., Wang Q., Rao Z. An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science 2018; 362, art. no. eaat8923 (12 pp.). doi: 10.1126/science. aat8923
16. Beites T., O’Brien K., Tiwari D., Engelhart C. A., Walters S., Andrews J., Yang H.-J., Sutphen M. L., Weiner D. M., Dayao E. K., Zimmerman M., Prideaux B., Desai P. V., Masquelin T., Via L. E., Dartois V., Boshoff H. I., Barry C. E., Ehrt S., Schnappinger, D. Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat. Commun. 2019; 10, art. no. 4970 (12 pp.). doi: 10.1038/s41467-019- 12956-2
17. Lee B. Sh., Sviriaeva E., Pethe K. Targeting the cytochrome oxidases for drug development in mycobacteria. Prog. Biophys. Mol. Biol. 2020; 152, 45–54. doi: 10.1016/j. pbiomolbio.2020.02.001
18. Borisov V. B., Gennis R. B., Hemp J., Verkhovsky M. I. The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta 2011; 1807, 1398–1413. doi: 10.1016/j.bbabio.2011.06.016
19. Berney M., Cook G. M. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PloS One 2010; 5, art. no. e8614 (11 pp.). doi: 10.1371/journal.pone.0008614
20. Mascolo L., Bald D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. Prog. Biophys. Mol. Biol. 2020; 152, 55–63. doi: 10.1016/j.pbiomolbio.2019.11.002
21. Pethe K., Bifani P., Jang J., Kang S., Park S., Ahn S., Jiricek J., Jung J., Jeon H. K., Cechetto J., Christophe T., Lee H., Kempf M., Jackson M., Lenaerts A. J., Pham H., Jones V., Seo M. J., Kim Y. M., Seo M., Seo J. J., Park D., Ko Y., Choi I., Kim R., Kim S. Y., Lim S., Yim S.-A., Nam J., Kang H., Kwon H., Oh Ch.-T., Cho Y., Jang Y., Kim J., Chua A., Tan B. H., Nanjundappa M. B., Rao S. P. S., Barnes W. S., Wintjens R., Walker J. R., Alonso S., Lee S., Kim J., Oh S., Oh T., Nehrbass U., Han S.-J., No Z., Lee J., Brodin P., Cho S.-N., Nam K., Kim J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med. 2013; 19, 1157–1160. doi: 10.1038/nm.3262
22. Gao X., Wen X., Yu Ch., Esser L., Tsao S., Quinn B., Zhang L., Yu L., Xia D. The crystal structure of mitochondrial cytochrome bc1 in complex with famoxadone: the role of aromatic-aromatic interaction in inhibition. Biochemistry 2002; 41, 11692–11702. doi: 10.1021/ bi026252p
23. Kessl J. J., Lange B. B., Merbitz-Zahradnik T., Zwicker K., Hill P., Meunier B., Pálsdóttir H., Hunte C., Meshnick S., Trumpower L. Molecular basis for atovaquone binding to the cytochrome bc1 complex. J. Biol. Chem. 2003; 278, 31312–31318. doi: 10.1074/jbc.M304042200
24. Lu P., Asseri A. H., Kremer M., Maaskant J., Ummels R., Lill H., Bald D. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Sci. Rep. 2018; 8, art. no. 2625 (7 pp.). doi: 10.1038/s41598-018-20989-8
25. Arora K., Ochoa-Montaño B., Tsang P. S., Blundell T. L., Dawes S. S., Mizrahi V., Bayliss T., Mackenzie C. J., Cleghorn L. A. T., Ray P. C., Wyatt P. G., Uh E., Lee J., Barry 3rd C. E., Boshoff H. I. Respiratory flexibility in response to inhibition of cytochrome c oxidase in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014; 58, 6962–6965. doi: 10.1128/AAC.03486-14
26. Li X.-W., Herrmann J., Zang Y., Grellier P., Prado S., Müller R., Nay B. Synthesis and biological activities of the respiratory chain inhibitor aurachin D and new ring versus chain analogues. Beilstein J. Org. Chem. 2013; 9, 1551–1558. doi: 10.3762/bjoc.9.176
27. Kang S., Kim Y. M., Kim R. Y., Seo M. J., No Z., Nam K., Kim S., Kim J. Synthesis and structure-activity studies of side chain analogues of the anti-tubercular agent, Q203. Eur. J. Med. Chem. 2017; 125, 807–815. doi: 10.1016/j.ejmech. 2016.09.082
28. Kang S., Kim Y. M., Jeon H., Park S., Seo M. J., Lee S., Park D., Nam J., Lee S., Nam K., Kim S., Kim S. Synthesis and structure–activity relationships of novel fused ring analogues of Q203 as antitubercular agents. Eur. J. Med. Chem. 2017; 136, 420–427. doi: 10.1016/j.ejmech. 2017.05.021
29. Sellamuthu S., Bhat M. F., Kumar A., Singh, S. K. Phenothiazine: A better scaffold against tuberculosis. Mini Rev. Med. Chem. 2018; 18, 1442–1451. doi: 10.2174/1389 557517666170220152651
30. Appetecchia F., Consalvi S., Scarpecci C., Biava M., Poce G. SAR Analysis of small molecules interfering with energy-metabolism in Mycobacterium tuberculosis. Pharmaceuticals (Basel) 2020; 13, art. no. 227 (33 pp.). doi: 10.3390/ph13090227
31. Kang S., Kim R. Y., Seo M. J., Lee S., Kim Y. M., Seo M., Seo J. J., Ko Y., Choi I., Jang J., Nam J., Park S., Kang H., Kim H. J., Kim J., Ahn S., Pethe K., Nam K., No Z., Kim J. Lead optimization of a novel series of imidazo[1,2-a]- pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent. J. Med. Chem. 2014; 57, 5293–5305. doi: 10.1021/ jm5003606
32. Motamen S., Quinn R. J. Analysis of approaches to anti- tuberculosis compounds. ACS Omega 2020; 5, 28529– 28540. doi: 10.1021/acsomega.0c03177
33. Li L., Wang Ap., Wang B., Liu M., Lv K., Tao Z., Ma Ch., Ma X., Han B., Wang Ao., Lu Y. N-(2-Phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides containing various amine moieties: Design, synthesis and antitubercular activity. Chin. Chem. Lett. 2020; 31, 409–412. doi: 10.1016/j. cclet.2019.07.038
34. Wang H., Wang A., Gu J., Fu L., Lv K., Ma Ch., Tao Z., Wang B., Liu M., Guo H., Lu Y. Synthesis and antitubercular evaluation of reduced lipophilic imidazo[1,2-a]pyridine- 3-carboxamide derivatives. Eur. J. Med. Chem. 2019; 165, 11–17. doi: 10.1016/j.ejmech.2018.12.071
35. Fullam E., Young R. J. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs? RSC Med. Chem. 2021; 12, 43–56. doi: 10.1039/d0md00265h
36. Lipinski C. A. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016; 101, 34–41. doi: 10.1016/j.addr.2016.04.029
37. Veber D. F., Johnson S. R., Cheng H.-Y., Smith B. R., Ward K. W., Kopple K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002; 45, 2615–2623. doi: 10.1021/jm020017n
38. Machado D., Girardini M., Miveiros M., Pieroni M. Challenging the drug-likeness dogma for new drug discovery in tuberculosis. Front. Microbiol. 2018; 9, art. no. 1367 (23 pp.). doi: 10.3389/fmicb.2018.01367
39. No Z., Kim J., Brodin P., Seo M. J., Park E., Cechetto J., Jeon H., Genovesio A., Lee S., Kang S., Ewann F. A., Nam J. Y., Fenistein D. P. C., Christophe T., Contreras Dominguez M., Kim E., Heo J. Anti-infective pyrido(1,2-a)pyrimidines. PCT Publication No. WO 2011/085990 A1, 21 July 2011.
40. https://clinicaltrials.gov/ct2/show/NCT03563599 (18 January 2021)
41. de Jager V. R., Dawson R., van Niekerk Ch., Hutchings J., Kim J., Vanker N., van der Merwe L., Choi J., Nam K., Diacon A. H. Telacebec (Q203), a new antituberculosis agent. N. Engl. J. Med. 2020; 382, 1280–1281. doi: 10.1056/NEJMc1913327
42. Russian Venture Company. Maxwell Biotech Venture Fund’s portfolio company Infectex acquires exclusive rights to Qurient’s tuberculosis drug Q203. https://www.prnewswire.com/news-releases/maxwell- biotech-venture-funds-portfolio-company-infectex- acquires-exclusive-rights-to-qurients-tuberculosis- drug-q203-245354721.html (12 March 2021).
43. Volkova A. Infectex successfully completed phase 1 clinical trials of Q203 drug for treating the tuberculosis. https://www.rvc.ru/en/press-service/massmedia/rvc/ 108385/ (18 January 2021).
44. Lee B. S., Kalia N. P., Jin X. E. F., Hasenoehrl E. J., Berney M., Pethe K. Inhibitors of energy metabolism interfere with antibiotic-induced death in mycobacteria. J. Biol. Chem. 2019; 294, 1936–1943. doi: 10.1074/jbc. RA118.005732
45. Telacebec – Qurient Co. https://adisinsight.springer. com/drugs/800039962 (12 March 2021).
Štítky
Farmacie FarmakologieČlánek vyšel v časopise
Česká a slovenská farmacie
2021 Číslo 5
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Budou nanoléčiva lépe cílit na některé onkologické nemoci?
Nejčtenější v tomto čísle
- Využití droplet-based mikrofluidních technik při přípravě mikročástic
- Telacebek (Q203): Vynára sa na obzore nové efektívne a bezpečné antituberkulotikum?
- Antiadhezívna, antibiofilmová a disperzná aktivita biosurfaktantov izolovaných z Bacillus amyloliquefaciens 3/22
- Vliv meloxikamu a extraktu z kryokonzervované placenty na počáteční zánětlivou reakci – experimentální studie