#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vitamin D: Its physiology, pathophysiology and significance in etiopathogenesis of malignant diseases


Authors: Klára Drábová 1;  Julie Bienertová-Vašků 1,2;  Petr Lokaj 1;  Lenka Dubská 3,4;  Radka Obermannová 5;  Kristína Greplová 3;  Regina Demlová 4,6;  Dalibor Valík 3,4;  Jaroslav Štěrba 1
Authors place of work: Klinika dětské onkologie, Fakultní nemocnice, Brno 1;  Ústav patologické fyziologie, Lékařská fakulta, Masarykova univerzita, Brno 2;  Oddělení laboratorní medicíny, Masarykův onkologický ústav, Brno 3;  Farmakologický ústav, Lékařská fakulta, Masarykova univerzita, Brno 4;  Klinika komplexní onkologické péče, Masarykův onkologický ústav, Brno 5;  Oddělení klinických hodnocení, Masarykův onkologický ústav, Brno 6
Published in the journal: Čas. Lék. čes. 2013; 152: 20-30
Category: Přehledový článek

Summary

Vitamin D is an endogenous product of mammalian organisms from which an active agent of a steroid hormone nature is synthesized. These hormones participate in a variety of key metabolic processes in every nuclear cell, whether on endocrine, paracrine and autocrine or subcellular level. Vitamin D represents a very interesting molecule which participates in a great deal of body processes. This review summarizes the findings about the metabolism of vitamin D focusing on pathophysiology of malignant diseases.

Keywords:
vitamin D – malignant diseases – metabolism of vitamin D – anticancer effects of vitamin D


Zdroje

1. Henaey, Robert P, et al. Vitamin D-3 Is More Potent Than Vitamin D–2 in Humans. Journal of Clinical Endocrinology & Metabolism 2011; 96: 3: E447–E452.

2. Zhang, Ran; Naughton, Declan P. Vitamin D in health and disease: Current perspectives. Nutrition Journal [online] http://www.nutritionj.com/content/9/1/65.

3. Skácelová, S. Význam vitaminu D pro lidské zdraví. Česká revmatologie 2010; 18(1): 26–40.

4. Schuster I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochimica et Biophysica Acta : Proteins and Proteomics 2011; 1814(1): 186–199.

5. Jabor A, et al. Vnitřní prostředí. Praha : Grada Publishing 2008.

6. Zehnder D, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 2001; 86(2): 888–894.

7. Silbernagl S, Lang F. Atlas patofyziologie člověka 1. Praha: Grada Publishing 2001.

8. Speeckaert MM, et al. Investigation of the potential association of vitamin D binding protein with lipoproteins. Annals of Clinical Biochemistry 2010; 47(2): 143–150.

9. Brannon PM, et al. Overview of the conference «Vitamin D and Health in the 21st Century: an Update». American Journal of Clinical Nutrition 2008; 88(2): 483S–490S.

10. Reis JP, et al. Serum vitamin D, parathyroid hormone levels, and carotid atherosclerosis. Atherosclerosis 2009; 207(2): 585–590.

11. Snijder M, et al. Vitamin D and diabetes. Diabetologia 2006; 49(1): 217–218.

12. Quarles LD. Endocrine functions of bone in mineral metabolism regulation. Journal of Clinical Investigation 2008; 118(12): 3820–3828.

13. St-Arnaud R. The direct role of vitamin D on bone homeostasis. Archives of Biochemistry and Biophysics 2008; 473(2): 225–230.

14. Mullin GE, Dobs A. Vitamin D and its role in cancer and immunity: A prescription for sunlight. Nutrition in Clinical Practice 2007; 22(3): 305–322.

15. Souberbielle J-C, et al. Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: Recommendations for clinical practice. Autoimmunity Reviews 2010; 9(11): 709–715.

16. Edfeldt K, et al. T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc Natl Acad Sci USA 2010; 107: 22593–22598.

17. Pryke AM, et al. Tumor necrosis factor-α induces vitamin D-1-hydroxylase activity in normal human alveolar macrophages. J Cell Physiol 1990; 142: 652–656.

18. Szeles L, et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol 2009; 182: 2074–2083.

19. Cantorna MT. Why do T cells express the vitamin D receptor? Ann NY Acad Sci 2011; 1217: 77–82.

20. Motrich RD, et al. Impact of vitamin D receptor activity on experimental autoimmune prostatitis. J Autoimmun 2009; 32: 140–148.

21. Mayne CG, et al. 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur J Immunol 2011; 41: 822–832.

22. Griffin MD, Dong X, Kumar R. Vitamin D receptor-mediated suppression of RelB in antigen presenting cells: a paradigm for ligand-augmented negative transcriptional regulation. Arch Biochem Biophys 2007; 460: 218–226.

23. Cantorna MT, Mahon BD. Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med (Maywood) 2004; 229: 1136–1142.

24. Palmer MT, et al. Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J Biol Chem 2011; 286: 997–1004.

25. Lips P. Worldwide status of vitamin D nutrition. Journal of Steroid Biochemistry and Molecular Biology 2010; 121, 1–2: 297–300.

26. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clinic Proceedings 2006; 81(3): 353–373.

27. Ginter E, Simko V. Vitamin D deficiency, atherosclerosis and cancer. Bratislava Medical Journal – Bratislavské lékařské listy 2009; 110(12): 751–756.

28. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. ELT Journal 2010; 64(1): 1080S–1086S.

29. Hart GR, et al. Measurement of vitamin D status: background, clinical use, and methodologies. Clinical Laboratory 2006; 52(7–8): 335–343.

30. Peterlik M, Grant WB, Cross HS. Calcium, Vitamin D and cancer. Anticancer Research 2009; 29(9): 3687–3698.

31. Davis CD. Vitamin D and cancer: current dilemmas and future research needs. American Journal of Clinical Nutrition 2008; 88(2): 565S–569S.

32. Garland CF, et al. Vitamin D for cancer prevention: global perspective. Annals of Epidemiology 2009; 19(7): 468–483.

33. Garland CF, et al. Vitamin D and prevention of breast cancer: Pooled analysis. Journal of Steroid Biochemistry and Molecular Biology 2007; 103(3–5): 708–711.

34. Wu K, et al. A Nested case-control study of plasma 25-hydroxyvitamin d concentrations and risk of colorectal cancer. Journal of the National Cancer Institute 2007; 99(14): 1120–1129.

35. Napoli N, et al. High Prevalence of Low Vitamin D and Musculoskeletal Complaints in Women with Breast Cancer. The Breast Journal 2010; 16(6): 609–616.

36. McCullough ML, Bostick RM, Mayo TL. Vitamin D gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer. Annual Review of Nutrition 2009; 29: 111–132.

37. Kleibeuker JH, Vandermeer R, Devries EGE. Calcium and vitamin-D – possible protective agents against colorectal-cancer. European Journal of Cancer 1995; 31A(7–8): 1081–1084.

38. Cui Y, Rohan TE. Vitamin D, calcium, and breast cancer risk: a review. Cancer Epidemiology Biomarkers & Prevention 2006; 15(8): 1427–1437.

39. Greer FR. Issues in establishing vitamin D recommendations for infants and children. American Journal of Clinical Nutrition 2004; 80(6): 1759S–1762S.

40. Vieth R. Vitamin D and cancer mini-symposium: the risk of additional vitamin D. Annals of Epidemiology 2009; 19, 7: 441–445.

41. Jones G. Pharmacokinetics of vitamin D toxicity. The American Journal of Clinical Nutrition 2008; 88, 2: 582S–586S.

42. Brock K, et al. Low vitamin D status is associated with physical inactivity, obesity and low vitamin D intake in a large US sample of healthy middle-aged men and women. Journal of Steroid Biochemistry and Molecular Biology 2010; 121(1–2): 462–466.

43. Lagunova Z, et al. Obesity and increased risk of cancer: does decrease of serum 25-hydroxyvitamin D level with increasing body mass index explain some of the association? Molecular Nutrition & Food Research 2010; 54(8): 1127–1133.

44. Looker AC. Do body fat and exercise modulate vitamin D status? Nutrition Reviews 2007; 65(8): S124–S126.

45. Ford ES, Ajani UA, McGuire LS. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care 2005; 28(5): 1228–1230.

46. Silvagno F, et al. Analysis of vitamin D receptor expression and clinical correlations in patients with ovarian cancer. Gynecologic Oncology 2010; 119(1): 121–124.

47. Srinivasan M, et al. Nuclear vitamin D receptor expression is associated with improved survival in non–small cell lung cancer. Journal of Steroid Biochemistry and Molecular Biology 2011; 123(1–2): 30–36.

48. Lopes N, et al. Alterations in vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer 2010; 10: 483–492.

49. Wong HL, et al. Vitamin D receptor start codon polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in Singapore Chinese. Carcinogenesis 2003; 24(6): 1091–1095.

50. Rukin NJ, Strange RC. What are the frequency, distribution, and functional effects of vitamin D receptor Polymorphisms as related to cancer risk? Nutrition Reviews 2007; 65(8): S96–S101.

51. Rukin NJ, et al. Prostate cancer susceptibility is mediated by interactions between exposure to ultraviolet radiation and polymorphisms in the 5‘ haplotype block of the vitamin D receptor gene. Cancer Letters 2007; 247(2): 328–335.

52. Koestner K, et al. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. Anticancer Research 2009; 29(9): 3511–3536.

53. Ingles SA. Can diet and/or sunlight modify the relationship between vitamin D receptor Polymorphisms and prostate cancer risk? Nutrition Reviews 2007; 65(8): S105–S107.

54. Raimondi S, et al. Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 2009; 30(7): 1170–1180.

55. Fenton RG, Longo DL. Cancer cell biology and angiogenesis. Harrison's principles of internal medicine 2005; 16: 453–464.

56. Chakraborti ChK. Vitamin D as a promising anticancer agent. Indian Journal of Pharmacology 2011; 43(2): 113–120.

57. Masuda S, Jones G. Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Molecular Cancer Therapeutics 2006; 5(4): 797–808.

58. Wang QM, Jones JB, Studzinski GP. Cyclin-dependent kinase inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cells. Cancer Research 1996; 56: 264–267.

59. May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999; 18(53): 7621–7636.

60. Maruyama R, et al. Comparative genome analysis identifies the vitamin D receptor gene as a direct target of p53-mediated transcriptional activation. Cancer Research 2006; 66(9): 4574–4583.

61. Thompson MD, Monga SPS. WNT/beta-catenin signaling in liver health and disease. Hepatology 2007; 45(5): 1298–1305.

62. Alvarez-Diaz S, et al. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells. Journal of Clinical Investigation 2009; 119: 2343–2358.

63. Yang L, et al. Autocrine TGF-β signaling mediates vitamin D3 analog-induced growth inhibition in breast cells. Journal of Cell Physiology 2001; 188: 383–393.

64. Rozen F, et al. Anti-proliferative action of vitamin D-related compounds and insulin-like growth factor-binding protein 5 accumulation. Journal of the National Cancer Institute 1997; 89: 652–656.

65. Haussler MR, et al. The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the „Fountain of Youth“ to mediate healthful aging. Journal of Steroid Biochemistry and Molecular Biology 2010; 121: 88–97.

66. Fesik SW, Shi YG. Structural biology - Controlling the caspases. Science 2001; 294(5546): 1477–1478.

67. Gupta MK, QIN R-Y. Mechanism and its regulation of tumor-induced angiogenesis. World Journal of Gastroenterology 2003; 9(6): 1144–1155.

68. Audo I, et al. Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. Invest Ophthalmology & Visual Science 2003; 44(10): 4192–4199.

69. Wagner N, et al. 1,25-dihydroxyvitamin D-3-induced apoptosis of retinoblastoma cells is associated with reciprocal changes of Bcl-2 and bax. Experimental Eye Research 2003; 77(1): 1–9.

70. Sundaram S, et al. The combination of a potent Vitamin D3 analog, EB 1089, with ionizing radiation reduces tumor growth and induces apoptosis of MCF-7 breast tumor xenografts in nude mice. Clinical Cancer Research 2003; 9(6): 2350–2356.

71. Nakagawa K, et al. 22-Oxa-1α,25-dihydroxyvitaminD3 inhibits metastasis and angiogenesis in lung cancer. Carcinogenesis 2005; 26: 1044–1054.

72. Gorham ED, et al. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. American Journal of Preventive Medicine 2007; 32: 210–216.

73. Ng K, et al. Prospective study of predictors of vitamin D status and survival in patients with colorectal cancer. British Journal of Cancer 2009; 101: 916–923.

74. Giovannucci E. Strengths and limitations of current epidemiologic studies: vitamin D as a modifier of colon and prostate cancer risk. Nutrition Reviews 2007; 65: S77–79.

75. Khan QJ, et al. Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer. Breast Cancer Research and Treatment 2010; 119(1): 111–118.

76. Rohan T. Epidemiological studies of vitamin D and breast cancer. Nutrition Reviews 2007; 65: S80–83.

77. Nürnberg B, et al. Reduced Serum 25-Hydroxyvitamin D Levels in Stage IV Melanoma Patients. Anticancer Research 2009; 29(9): 3669–3674.

78. Drake MT, et al. Vitamin D Insufficiency and Prognosis in Non-Hodgkin´s Lymphoma. Journal of Clinical Oncology 2010; 28(27): 4191–4198.

79. Meyer F, et al. Dietary vitamin D intake and serum 25-hydroxyvitamin D level in relation to disease outcomes in head and neck cancer patients. International Journal of Cancer 2011; 128(7): 1741–1746.

80. Holick MF. Vitamin D: Evolutionary, Physiological and Health Perspectives. Current Drug Targets 2011; 12(1): 4–18.

81. Stallings VA. Childhood cancer and vitamins: prevention and treatment. Pediatric Blood & Cancer 2008; 50, 2: 442–444.

82. Kennedy DD, et al. Low antioxidant vitamin intakes are associated with increases in adverse effects of chemotherapy in children with acute lymphoblastic leukemia. American Journal of Clinical Nutrition 2004; 79(6): 1029–1036.

83. Feldman D, et al. Vitamin D inhibition of the prostaglandin pathway as therapy for prostate cancer. Nutrition Reviews 2007; 65(8): S113–S115.

84. Cross HS. Extrarenal vitamin D hydroxylase expression and activity in normal and malignant cells: Modification of expression by epigenetic mechanisms and dietary substances. Nutrition Reviews 2007; 65(8): S108–S112.

85. Krishnan AV, et al. Potentiation of the growth-inhibitory effects of vitamin D in prostate cancer by genistein. Nutrition Reviews 2007; 65(8): S121–S123.

86. Stolzenberg-Solomon RZ, et al. A prospective nested case-control study of vitamin D status and pancreatic cancer risk in male smokers. Cancer Research 2006; 66(20): 10213–10219.

87. Lappe JM, et al. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. American Journal of Clinical Nutrition 2007; 85(6): 1586–1591.

88. Zapletalova D, et al. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: a multicenter experience. Oncology 2012; 82(5): 249–260.

89. Zhou W, et al. Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients. Journal of Clinical Oncology 2007; 25(5): 479–485.

90. Shabahang M, et al. Growth-inhibition of ht-29 human colon-cancer cells by analogs of 1,25-dihydroxyvitamin D-3. Cancer Research 1994; 54(15): 4057–4064.

91. Spina CS, et al. Vitamin D and cancer. Anticancer Research 2006; 26(4A): 2515–2524.

92. Berkovich L, Ben-Shabat S, Sintov AC. Induction of apoptosis and inhibition of prostate and breast cancer growth by BGP-15, a new calcipotriene-derived vitamin D-3 analog. Anti-Cancer Drugs 2010; 21(6): 609–618.

93. Lange TS, et al. Effect of a Vitamin D-3 derivative (B3CD) with postulated anti-cancer activity in an ovarian cancer animal model. Investigational New Drugs 2010; 28(5): 543–553.

94. Edlich RF, et al. Scientific documentation of the relationship of vitamin d deficiency and the development of cancer. Journal of Environmental Pathology Toxicology and Oncology 2009; 28(2): 133–141.

95. Bikle D. Nonclassic actions of vitamin D. Journal of Clinical Endocrinology & Metabolism 2009; 94, 1: 26–34.

96. Haussler MR, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. Journal of Bone and Mineral Research 1998; 13(3): 325–349.

97. Ng KY, et al. Vitamin D and vitamin a receptor expression and the proliferative effects of ligand activation of these receptors on the development of pancreatic progenitor cells derived from human fetal pancreas. Stem Cell Reviews and Reports 2011; 7(1): 53–63.

98. Carlberg C. Current understanding of the function of the nuclear vitamin D receptor in response to its natural and synthetic Ligands. Recent Results in Cancer Research 2003; 164: 29–42.

99. Holick MF. Stay tuned to PXR: an orphan actor that may not be D-structive only to bone. The Journal of Clinical Investigation 2005; 115(1): 32–34.

Štítky
Adiktologie Alergologie a imunologie Angiologie Audiologie a foniatrie Biochemie Dermatologie Dětská gastroenterologie Dětská chirurgie Dětská kardiologie Dětská neurologie Dětská otorinolaryngologie Dětská psychiatrie Dětská revmatologie Diabetologie Farmacie Chirurgie cévní Algeziologie Dentální hygienistka

Článek vyšel v časopise

Časopis lékařů českých

Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#