TKÁŇOVÉ INŽENÝRSTVÍ V PLASTICKÉ CHIRURGII – CO SE PODAŘILO
Autoři:
J. Ribeiro 1; R. P. Pirraco 2; R. Horta 1,3
Působiště autorů:
Faculdade de Medicina da Universidade do Porto, Porto, Portugal
1; 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European, Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
2; Department of Plastic, Reconstructive and Maxillo-Facial Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Medical School, Porto, Portugal
3
Vyšlo v časopise:
ACTA CHIRURGIAE PLASTICAE, 62, 3-4, 2020, pp. 103-110
Zdroje
1. Skalak R, Fox CF. Tissue engineering: proceedings of a workshop, held at Granlibakken, Lake Tahoe, California, February 26-29, 1988. Liss; 1988, 343 pages. ISBN-10: 0845147064
2. Sterodimas A., De Faria J., Correa WE., Pitanguy I. Tissue engineering in plastic surgery: an up-to-date review of the current literature. Ann Plast Surg. 2009, 62:97-103.
3. Al-Himdani S., Jessop Z.M., Al-Sabah A. et al. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice. Frontiers in Surgery. 2017, 4(4):1-13.
4. Kratz G., Huss F. Tissue engineering--body parts from the Petri dish. Scand J Surg. 2003, 92:241-7.
5. Goessler UR., Hormann K., Riedel F. Tissue engineering with adult stem cells in reconstructive surgery (review). Int J Mol Med. 2005, 15:899-905.
6. Hillel AT., Elisseeff JH. Embryonic progenitor cells in adipose tissue engineering. Facial Plast Surg. 2010, 26:405-12.
7. Miller MJ., Patrick CW., Jr. Tissue engineering. Clinics in Plastic Surgery. 2003, 30:91-103.
8. Wong VW., Rustad KC., Longaker MT., Gurtner GC. Tissue engineering in plastic surgery: a review. Plast Reconstr Surg. 2010, 126:858-68.
9. Golas AR., Hernandez KA., Spector JA. Tissue engineering for plastic surgeons: a primer. Aesthetic Plast Surg. 2014, 38:207-21.
10. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126:663-76.
11. Cetrulo C.L., Jr. Cord-blood mesenchymal stem cells and tissue engineering. Stem Cell Rev. 2006, 2:163-8.
12. Cerqueira MT., Pirraco RP., Martins AR., Santos TC., Reis RL., Marques AP. Cell sheet technology-driven re-epithelialization and neovascularization of skin wounds. Acta Biomater.2014, 10:3145-55.
13. Zarei F., Negahdari B. Recent progresses in plastic surgery using adipose-derived stem cells, biomaterials and growth factors. J Microencapsul. 2017, 34:699-706.
14. Kim JJ., Evans GR. Applications of biomaterials in plastic surgery. Clin Plast Surg. 2012, 39:359-76.
15. Cerqueira MT., Pirraco RP., Santos TC., Rodrigues DB., Frias AM., Martins AR., et al. Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds. Biomacromolecules. 2013, 14:3997-4008.
16. Gentile P., Scioli MG., Bielli A., Orlandi A., Cervelli V. Concise Review: The Use of Adipose-Derived Stromal Vascular Fraction Cells and Platelet Rich Plasma in Regenerative Plastic Surgery. Stem Cells. 2017, 35:117-34.
17. Gentile P., Orlandi A., Scioli MG., Di Pasquali C., Bocchini I., Cervelli V. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Transl Med. 2012, 1:230-6.
18. Kim Y-J., Jeong J-H. Clinical application of adipose stem cells in plastic surgery. J Korean Med Sci. 2014, 29:462-7.
19. Naderi N., Combellack EJ., Griffin M., Sedaghati T., Javed M., Findlay MW. et al. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J. 2017, 14:112-24.
20. Sung HM., Suh IS, Lee HB, Tak KS, Moon KM, Jung MS. Case Reports of Adipose-derived Stem Cell Therapy for Nasal Skin Necrosis after Filler Injection. Arch Plast Surg. 2012, 39:51-4.
21. Gentile P., Cervelli V. Adipose-Derived Stromal Vascular Fraction Cells and Platelet-Rich Plasma: Basic and Clinical Implications for Tissue Engineering Therapies in Regenerative Surgery. Methods Mol Biol. 2018, 1773:107-22.
22. Gentile P., Orlandi A., Scioli MG., Di Pasquali C., Bocchini I., Cervelli V. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem cells translational medicine. 2012, 1:230-6.
23. Caterson EJ., Caterson SA. Regeneration in medicine: a plastic surgeons “tail” of disease, stem cells, and a possible future. Birth Defects Res C Embryo Today. 2018, 84:322-34.
24. Sheridan RL. Comprehensive treatment of burns. Curr Probl Surg. 2001, 38:657-756.
25. Markeson D., Pleat JM., Sharpe JR., Harris AL., Seifalian AM., Watt SM. Scarring, stem cells, scaffolds and skin repair. Journal of Tissue Engineering and Regenerative Medicine. 2015, 9:649-68.
26. Klar AS., Guven S., Biedermann T., Luginbuhl J., Bottcher-Haberzeth S., Meuli-Simmen C., et al. Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials. 2014, 35:5065-78.
27. Cerqueira MT, da Silva LP, Santos TC, Pirraco RP., Correlo VM., Marques AP., et al. Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence early wound healing. Tissue Eng Part A. 2014, 20:1369-78.
28. Cerqueira MT., da Silva LP., Santos TC., Pirraco RP., Correlo VM., Reis RL., et al. Gellan Gum-Hyaluronic Acid Spongy-like Hydrogels and Cells from Adipose Tissue Synergize Promoting Neoskin Vascularization. ACS Applied Materials & Interfaces. 2014, 6:19668-79.
29. da Silva LP., Santos TC., Rodrigues DB., Pirraco RP., Cerqueira MT., Reis RL., et al. Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing. Journal of Investigative Dermatology. 2017, 137:1541-51.
30. Silva LP., Pirraco R.P, Santos TC., Novoa-Carballal R., Cerqueira MT., Reis RL., et al. Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. ACS Appl Mater Interfaces. 2016, 8:33464-74.
31. Minonzio G., Corazza M., Mariotta L., Gola M., Zanzi M., Gandolfi E., et al. Frozen adipose-derived mesenchymal stem cells maintain high capability to grow and differentiate. Cryobiology. 2014, 69:211-16.
32. Bashir MM., Sohail M., Bashir A., Khan FA., Jan SN., Imran M., et al. Outcome of Conventional Adipose Tissue Grafting for Contour Deformities of Face and Role of Ex Vivo Expanded Adipose Tissue-Derived Stem Cells in Treatment of Such Deformities. J Craniofac Surg. 2018, 29:1143-7.
33. Lequeux C., Rodriguez J., Boucher F., Rouyer O., Damour O., Mojallal A., et al. In vitro and in vivo biocompatibility, bioavailability and tolerance of an injectable vehicle for adipose-derived stem/stromal cells for plastic surgery indications. J Plast Reconstr Aesthet Surg. 2015, 68:1491-7.
34. Kolle SF., Fischer-Nielsen A., Mathiasen AB., Elberg JJ., Oliveri RS., Glovinski PV., et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013, 382:1113-20.
35. Lee HC., An SG., Lee HW., Park JS., Cha KS., Hong TJ., et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012, 76:1750-60.
36. Tiryaki T., Findikli N., Tiryaki D. Staged stem cell-enriched tissue (SET) injections for soft tissue augmentation in hostile recipient areas: a preliminary report. Aesthetic Plast Surg. 2011, 35:965-71.
37. Alperovich M., Lee ZH., Friedlander PL., Rowan BG., Gimble JM., Chiu ES. Adipose stem cell therapy in cancer reconstruction: a critical review. Ann Plast Surg. 2014, 73:104-7.
38. Yoshimura K., Asano Y., Aoi N., Kurita M., Oshima Y., Sato K., et al. Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J. 2010, 16:169-75.
39. Wang L., Lu Y., Luo X., Fu MG., Hu X., Dong H., et al. „Cell-assisted lipotransfer for breast augmentation: a report of 18 patients“. Zhonghua zheng xing wai ke za zhi= Zhonghua zhengxing waike zazhi= Chinese journal of plastic surgery, 2012, 28.1:1-6.
40. Yoshimura K., Sato K., Aoi N., Kurita M., Hirohi T., Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008, 32:48-55.
41. Zimmerlin L., Donnenberg AD., Rubin JP., Basse P., Landreneau RJ., Donnenberg VS. Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng Part A. 2011, 17:93-106.
42. Altman AM., Prantl L., Muehlberg FL., Song YH., Seidensticker M., Butler CE., et al. Wound microenvironment sequesters adipose-derived stem cells in a murine model of reconstructive surgery in the setting of concurrent distant malignancy. Plast Reconstr Surg. 2011, 127:1467-77.
43. Sun B., Roh KH., Park JR., Lee SR., Park SB., Jung JW., et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy. 2009, 11:289-98.
44. Alvarez PD., Garcia-Arranz M.., Georgiev-Hristov T, Garcia-Olmo D. A new bronchoscopic treatment of tracheomediastinal fistula using autologous adipose-derived stem cells. Thorax. 2008, 63:374-6.
45. Lott DG., Janus JR.. Tissue engineering for otorhinolaryngology-head and neck surgery. Mayo Clin Proc. 2014, 89:1722-33.
46. Nyberg EL., Farris AL., Hung BP., Dias M., Garcia JR., Dorafshar AH., et al. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration. Ann Biomed Eng. 2017, 45:45-57.
47. Wiggenhauser PS., Schantz JT., Rotter N. Cartilage engineering in reconstructive surgery: auricular, nasal and tracheal engineering from a surgical perspective. Regen Med. 2017, 12:303-14.
48. Man D., Plosker H., Winland-Brown JE. The use of autologous platelet-rich plasma (platelet gel) and autologous platelet-poor plasma (fibrin glue) in cosmetic surgery. Plast Reconstr Surg. 2001, 107:229-37.
49. Powell DM., Chang E., Farrior EH. Recovery from deep-plane rhytidectomy following unilateral wound treatment with autologous platelet gel: a pilot study. Arch Facial Plast Surg. 2001, 3:245-50.
50. Guerrerosantos J., Guerrerosantos F., Orozco J. Classification and treatment of facial tissue atrophy in Parry-Romberg disease. Aesthetic Plast Surg. 2007, 31:424-34.
51. Guerrerosantos J. Evolution of Technique: Face and Neck Lifting and Fat Injections. Clinics in Plastic Surgery. 2008, 35:663-76.
52. Cervelli V., Gentile P. Use of cell fat mixed with platelet gel in progressive hemifacial atrophy. Aesthetic Plast Surg. 2009, 33:22-7.
53. Coleman SR. Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg. 1995, 19:421-5.
54. Grimaldi M , Gentile P , Labardi L , Silvi E , Trimarco A , Cervelli V. Lipostructure technique in Romberg syndrome. J Craniofac Surg. 2008, 19:1089-91.
55. Hixon KR., Melvin AM., Lin AY., Hall AF., Sell SA. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl. 2017, 32:598-611.
56. Azami M., Samadikuchaksaraei A., Poursamar SA. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs. 2010, 33:86-95.
57. Thesleff T., Lehtimaki K., Niskakangas T., Mannerstrom B., Miettinen S., Suuronen R., et al. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery. 2011, 68:1535-40.
58. Lendeckel S., Jodicke A., Christophis P., Heidinger K., Wolff J., Fraser JK., et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004, 32:370-3.
59. Sandor GK., Numminen J., Wolff J., Thesleff T., Miettinen A., Tuovinen VJ., et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014, 3:530-40.
60. Petite H., Viateau V., Bensaid W., Meunier A., de Pollak C., Bourguignon M., et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000, 18:959-63.
61. Warnke PH., Springer IN., Wiltfang J., Acil Y., Eufinger H., Wehmoller M., et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004, 364:766-70.
62. Chin M., Ng T., Tom WK., Carstens M. Repair of alveolar clefts with recombinant human bone morphogenetic protein (rhBMP-2) in patients with clefts. J Craniofac Surg. 2005, 16:778-89.
63. Yanaga H., Imai K., Yanaga K. Generative surgery of cultured autologous auricular chondrocytes for nasal augmentation. Aesthetic Plast Surg. 2009, 33:795-802.
64. Fulco I., Miot S., Haug MD., Barbero A., Wixmerten A., Feliciano S., et al. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet. 2014, 384:337-46.
65. Storck K., Staudenmaier R., Buchberger M., Strenger T., Kreutzer K., von Bomhard A., et al. Total reconstruction of the auricle: our experiences on indications and recent techniques. Biomed Res Int. 2014;2014: ID 373286.1-15. Doi: 10.1155/2014/373286.
66. Yanaga H., Imai K., Fujimoto T., Yanaga K. Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg. 2009, 124:817-25.
67. Propst EJ., Prager JD., Meinzen-Derr J., Clark SL., Cotton RT., Rutter MJ. Pediatric tracheal reconstruction using cadaveric homograft. Arch Otolaryngol Head Neck Surg. 2011, 137:583-90.
68. Rich JT., Gullane PJ. Current concepts in tracheal reconstruction. Curr Opin Otolaryngol Head Neck Surg. 2012, 20:246-53.
69. Yu P, Clayman GL, Walsh GL. Long-term outcomes of microsurgical reconstruction for large tracheal defects. Cancer. 2011, 117:802-8.
70. Hamilton NJ., Kanani M., Roebuck DJ., Hewitt RJ., Cetto R., Culme-Seymour EJ., et al. Tissue-Engineered Tracheal Replacement in a Child: A 4-Year Follow-Up Study. Am J Transplant. 2015, 15:2750-7.
71. Delaere P., Vranckx J., Verleden G., De Leyn .P, Van Raemdonck D. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med. 2010, 362:138-45.
72. Neovius E., Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg. 2010, 63:1615-23.
73. Oppenheimer AJ,, Mesa J,, Buchman SR. Current and emerging basic science concepts in bone biology: implications in craniofacial surgery. J Craniofac Surg. 2012, 23:30-6.
74. Quarto R., Mastrogiacomo M., Cancedda R., Kutepov SM., Mukhachev V., Lavroukov A., et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 344, 2001, p. 385-386.
75. Lissenberg-Thunnissen SN., de Gorter DJ., Sier CF., Schipper IB. Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop. 35, 2011, p. 1271-1280.
76. Nejadnik H., Hui JH., Feng Choong EP., Tai BC., Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010, 38:1110-6.
77. Wakitani S., Imoto K., Yamamoto T., Saito M., Murata N., Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002, 10:199-206.
78. Orozco L., Munar A., Soler R., Alberca M., Soler F., Huguet M., et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013, 95:1535-41.
79. Brittberg M., Lindahl A., Nilsson A., Ohlsson C., Isaksson O., Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994, 331:889-95.
80. James R., Kumbar SG., Laurencin CT., Balian G., Chhabra AB. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed Mater. 2011, 6.2:025011. Doi: 10.1088/1748-6041/6/2/025011
81. Kwee BJ., Mooney DJ. Biomaterials for skeletal muscle tissue engineering. Curr Opin Biotechnol. 2017, 47:16-22.
82. Li GN., Hoffman-Kim D. Tissue-engineered platforms of axon guidance. Tissue Eng Part B Rev. 2008, 14:33-51.
83. Sowa Y., Imura T., Numajiri T., Nishino K., Fushiki S. Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem Cells Dev. 2012, 21:1852-62.
84. Terenghi G., Wiberg M., Kingham PJ. Chapter 21: Use of stem cells for improving nerve regeneration. Int Rev Neurobiol. 2009, 87:393-403.
85. Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001, 344(7):532-3.
86. L’Heureux N., Paquet S., Labbe R., Germain L., Auger FA. A completely biological tissue-engineered human blood vessel. Faseb j. 1998, 12:47-56.
87. Peck M., Gebhart D., Dusserre N., McAllister TN., L’Heureux N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs. 2012, 195:144-58.
88. Niklason LE., Gao J., Abbott WM., Hirschi KK., Houser S., Marini R., et al. Functional arteries grown in vitro. Science. 1999, 284:489-93.
89. Xu ZC., Zhang Q., Li H. Human hair follicle stem cell differentiation into contractile smooth muscle cells is induced by transforming growth factor-beta1 and platelet-derived growth factor BB. Mol Med Rep. 2013, 8:1715-21.
90. Costa M., Cerqueira MT., Santos TC.., Sampaio-Marques B, Ludovico P., Marques AP., et al. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. Acta Biomater. 2017, 55:131-43.
91. Costa M., Pirraco RP., Cerqueira MT., Reis RL., Marques AP. Growth Factor-Free Pre-vascularization of Cell Sheets for Tissue Engineering. Methods Mol Biol. 2016, 1516:219-26.
Štítky
Chirurgie plastická Ortopedie Popáleninová medicína TraumatologieČlánek vyšel v časopise
Acta chirurgiae plasticae
2020 Číslo 3-4
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Neodolpasse je bezpečný přípravek v krátkodobé léčbě bolesti
- Léčba akutní pooperační bolesti z pohledu ortopeda
- Příčiny a možnosti ovlivnění bolesti předního kolene po implantaci totální endoprotézy
Nejčtenější v tomto čísle
- DIFÚZE INJEKTOVANÉ KOLAGENÁZY CLOSTRIDIUM HISTOLYTICUM U DUPUYTRENOVY NEMOCI: STUDIE IN VIVO
- HIRUDOTERAPIE V REKONSTRUKČNÍ CHIRURGII: KAZUISTIKY A REVIEW
- FUNKČNÍ REKONSTRUKCE MĚKKOTKÁŇOVÝCH OROFACIÁLNÍCH DEFEKTŮ MIKROVASKULÁRNÍM LALOKEM MUSCULUS GRACILIS
- DERMÁLNÍ NÁHRADA MATRIDERM® – PRVNÍ ZKUŠENOSTI NA KLINICE POPÁLENINOVÉ MEDICÍNY 3. LF UK A FNKV
Zvyšte si kvalifikaci online z pohodlí domova
Kardiologické projevy hypereozinofilií
nový kurzVšechny kurzy