Long non-coding RNAs in the pathophysiology of atherosclerosis
Authors:
Jan Novák 1,2,3; Julie Bienertová Vašků 3; Miroslav Souček 1
Authors‘ workplace:
II. interní klinika LF MU a FN U sv. Anny v Brně
1; Fyziologický ústav LF MU, Brno
2; Ústav patologické fyziologie LF MU, Brno
3
Published in:
Vnitř Lék 2018; 64(1): 77-82
Category:
Reviews
Overview
The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2–3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as “non-coding RNAs”. Earlier the non-coding RNA was considered “the dark matter of genome”, or “the junk”, whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body – they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.
Key words:
atherosclerosis – lincRNA – lncRNA – MALAT – MIAT
Sources
1. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12(12): 861–874. Dostupné z DOI: <http://dx.doi.org/10.1038/nrg3074>.
2. [ENCODE Project Consortium]. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57–74. Dostupné z DOI: <http://dx.doi.org/10.1038/nature11247>.
3. Emes RD, Goodstadt L, Winter EE et al. Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum Mol Genet 2003; 12(7): 701–709.
4. Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 2007; 29(3): 288–299. Dostupné z DOI: <http://dx.doi.org/10.1002/bies.20544>.
5. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 925–933. Dostupné z DOI: <http://dx.doi.org/10.4161/rna.24604>.
6. Novák J, Souček M. Význam mikroRNA v patofyziologii aterosklerózy a jejich možné klinické využití. AtheroReview 2016; 1(3): 144–150.
7. Engreitz JM, Pandya-Jones A, McDonel P et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013; 341(6147): 1237973. Dostupné z DOI: <http://dx.doi.org/10.1126/science.1237973>.
8. Li X, Wu Z, Fu X et al. lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res 2014; 762: 1–21. Dostupné z DOI: <http://dx.doi.org/10.1016/j.mrrev.2014.04.002>.
9. Li H, Zhu H, Ge J. Long Noncoding RNA: Recent Updates in Atherosclerosis. Int J Biol Sci 2016; 12(7): 898–910. Dostupné z DOI: <http://dx.doi.org/10.7150/ijbs.14430>.
10. Jian L, Jian D, Chen Q et al. Long Noncoding RNAs in Atherosclerosis. J Atheroscler Thromb 2016; 23(4): 376–384. Dostupné z DOI: <http://dx.doi.org/10.5551/jat.33167>.
11. Zhou T, Ding J, Wang X et al. Long noncoding RNAs and atherosclerosis. Atherosclerosis 2016; 248: 51–61. Dostupné z DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.025>.
12. Kurian L, Aguirre A, Sancho-Martinez I et al. Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 2015; 131(14): 1278–1290. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013303>.
13. Tang Y, Wo L, Chai H. Effects of noncoding RNA NRON gene regulation on human umbilical vein endothelial cells functions. Zhonghua Xin Xue Guan Bing Za Zhi 2013; 41(3): 245–250.
14. Woo KV, Baldwin HS. Role of Tie1 in shear stress and atherosclerosis. Trends Cardiovasc Med 2011; 21(4): 118–123. Dostupné z DOI: <http://dx.doi.org/10.1016/j.tcm.2012.03.009>.
15. Jiang Q, Shan K, Qun-Wang X et al. Long non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain. Oncotarget 2016; 7(31): 49688–49698. Dostupné z DOI: <http://dx.doi.org/10.18632/oncotarget.10434>.
16. Yan B, Yao J, Liu JY et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 2015; 116(7): 1143–1156. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.116.305510>.
17. Michalik KM, You X, Manavski Y et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 2014; 114(9): 1389–1397. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.114.303265>.
18. Holdt LM, Teupser D. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler Thromb Vasc Biol 2012; 32(2): 196–206. Dostupné z DOI: <http://dx.doi.org/10.1161/ATVBAHA.111.232678>.
19. Holdt LM, Beutner F, Scholz M et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 2010; 30(3): 620–627. Dostupné z DOI: <http://dx.doi.org/10.1161/ATVBAHA.109.196832>.
20. Bell RD, Long X, Lin M et al. Identification and Initial Functional Characterization of a Human Vascular Cell Enriched Long Non-Coding RNA. Arterioscler Thromb Vasc Biol 2014; 34(6): 1249–1259. Dostupné z DOI: <http://dx.doi.org/10.1161/ATVBAHA.114.303240>.
21. Ding Z, Wang X, Schnackenberg L et al. Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7 g. Int J Cardiol 2013; 168(2): 1378–1385. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2012.12.045>.
22. Leung A, Trac C, Jin W et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 2013; 113(13): 266–278. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.112.300849>.
23. Reddy MA, Chen Z, Park JT et al. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes 2014; 63(12): 4249–4261. Dostupné z DOI: <http://dx.doi.org/10.2337/db14–0298>.
24. Vigetti D, Deleonibus S, Moretto P et al. Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Biol Chem 2014; 289(42): 28816–28826. Dostupné z DOI: <http://dx.doi.org/10.1074/jbc.M114.597401>.
25. Zhao Y, Feng G, Wang Y et al. Regulation of apoptosis by long non-coding RNA HIF1A-AS1 in VSMCs: implications for TAA pathogenesis. Int J Clin Exp Pathol 2014; 7(11): 7643–7652.
26. Li L, Li X, The E et al. Low expression of lncRNA-GAS5 is implicated in human primary varicose great saphenous veins. PloS One 2015; 10(3): e0120550. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0120550>.
27. Hu YW, Yang JY, Ma X et al. A lincRNA-DYNLRB2–2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. J Lipid Res 2014; 55(4): 681–697. Dostupné z DOI: <http://dx.doi.org/10.1194/jlr.M044669>.
28. Hu YW, Zhao JY, Li SF et al. RP5–833A20.1/miR-382–5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arterioscler Thromb Vasc Biol 2015; 35(1): 87–101. Dostupné z DOI: <http://dx.doi.org/10.1161/ATVBAHA.114.304296>.
29. Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol 2009; 157(2): 153–165. Dostupné z DOI: <http://dx.doi.org/10.1038/bjp.2008.349>.
30. Sergeeva OV, Koteliansky VE, Zatsepin TS. mRNA-Based Therapeutics - Advances and Perspectives. Biochem Biokhimiia 2016; 81(7): 709–722. Dostupné z DOI: <http://dx.doi.org/10.1134/S0006297916070075>.
31. Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 2016; 44(2): 863–877. Dostupné z DOI: <http://dx.doi.org/10.1093/nar/gkv1206>.
32. Ray KK, Landmesser U, Leiter LA et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N Engl J Med 2017; 376(15): 1430–1440. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1615758>.
33. Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review. World J Gastroenterol 2015; 21(34): 9863–9886. Dostupné z DOI: <http://dx.doi.org/10.3748/wjg.v21.i34.9863>.
34. Kumarswamy R, Bauters C, Volkmann I et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 2014; 114(10): 1569–1575. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.114.303915>.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2018 Issue 1
Most read in this issue
- Familial combined hyperlipidemia – the most common genetic dyslipidemia in population and in patients with premature atherothrombotic cardiovascular disease
- Epidemiology of hypercholesterolemia
- Diabetic dyslipidemia and microvascular complications of diabetes
- The current position of hydrochlorothiazide among thiazide and thiazide-like diuretics