Effect of pulsatility on markers of vascular damage in patients with implanted continuous flow mechanical circulatory support
Authors:
Peter Ivák 1,4; Jan Piťha 2,3; Ivana Králová Lesná 2; Ivan Netuka 1,5
Authors‘ workplace:
Klinika kardiovaskulární chirurgie IKEM, Praha
1; Laboratoř pro výzkum aterosklerózy, Centrum experimentální medicíny IKEM, Praha
2; Interní klinika 2. LF UK a FN Motol, Praha
3; Ústav normální, patologické a klinické fyziologie 3. LF UK, Praha
4; II. chirurgická klinika – kardiovaskulární chirurgie 1. LF UK a VFN v Praze
5
Published in:
Vnitř Lék 2018; 64(1): 66-71
Category:
Reviews
Overview
Ventricular assist devices are an important therapeutic modality in advanced surgical therapy of end-stage heart failure. Previously most frequently used devices generated mainly non-pulsatile blood flow. Despite indisputable clinical success of this therapy, we encounter complications specific to the devices generating continuous flow. Complications are mainly attributed to changes in shear stress and subsequent changes of the blood vessel characteristics, mainly of endothelium. Effect of continuous flow on the vasculature and blood elements, therefore, became a subject of intense recent research. Effect of continuous flow on the vascular bed is subject of intensive research. Widespread methods used in angiology measuring the state of vasculature are based mainly on imaging modalities and on the presence of pulsatile flow; therefore, under circumstances of non-pulsatile flow their use is limited and the attention is shifted also to laboratory methods, namely to detection of circulating indicators of vascular damage. Therefore, in our recent studies of the effect of mechanical ventricular assist devices on the blood flow we exploit combination of imaging and laboratory methods, including measurements of circulating microparticles and endothelial progenitor cells. Based on these studies interesting data were obtained studying the effect of implantation of mechanical cardiac support on the dynamics of vascular changes taking into account also response to changes of blood flow characteristics. In this paper we summarize our observations.
Key words:
continuous flow – endothelial progenitor cells – mechanical circulatory support – microparticles – vascular damage
Sources
1. Pasque MK, Rogers JG. Adverse events in the use of HeartMate vented electric and Novacor left ventricular assist devices: comparing apples and oranges. J Thorac Cardiovasc Surg 2002; 124(6): 1063–1067. Dostupné z DOI: <http://dx.doi.org/10.1067/mtc.2002.123520>.
2. Kirklin JK, Naftel DC, Pagani FD et al. Sixth INTERMACS annual report: A 10,000-patient database. J Heart Lung Transplant 2014; 33(6): 555–564. Dostupné z DOI: <http://dx.doi.org/10.1016/j.healun.2014.04.010>. Erratum in J Heart Lung Transplant. 2015; 34(10): 1356. Baldwin TJ.
3. Radovancevic B, Vrtovec B, de Kort E et al. End-organ function in patients on long-term circulatory support with continuous- or pulsatile-flow assist devices. J Heart Lung Transplant 2007; 26(8): 815–818. Dostupné z DOI: <http://dx.doi.org/10.1016/j.healun.2007.05.012>.
4. Sandner SE, Zimpfer D, Zrunek P et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg 2009; 87(4): 1072–1078. Dostupné z DOI: <http://dx.doi.org/10.1016/j.athoracsur.2009.01.022>.
5. Slaughter MS. Long-term continuous flow left ventricular assist device support and end-organ function: prospects for destination therapy. J Card Surg 2010; 25(4): 490–494.Dostupné z DOI: <http://dx.doi.org/10.1111/j.1540–8191.2010.01075.x>.
6. Lerman A, Burnett JC Jr. Intact and altered endothelium in regulation of vasomotion. Circulation 1992; 86(6 Suppl): III12-III19.
7. Nakano T, Tominaga R, Nagano I et al. Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. Am J Physiol Heart Circ Physiol 2000; 278(4): H1098-H1104. Dostupné z DOI: <http://dx.doi.org/10.1152/ajpheart.2000.278.4.H1098>.
8. Hasin T, Matsuzawa Y, Guddeti RJ et al. Attenuation in peripheral endothelial function after continuous flow left ventricular assist device therapy is associated with adverse events. Circ J 2015; 79(4): 770–777. Dostupné z DOI: <http://dx.doi.org/10.1253/circj.CJ-14–1079>.
9. Gambillara V, Thacher T, Silacci P et al. Effects of reduced cyclic stretch on vascular smooth muscle cell function of pig carotids perfused ex vivo. Am J Hypertens 2008; 21(4): 425–431. Dostupné z DOI: <http://dx.doi.org/10.1038/ajh.2007.72>.
10. Nishinaka T, Tatsumi E, Nishimura T et al. Change in vasoconstrictive function during prolonged nonpulsatile left heart bypass. Artif Organs 2001; 25(5): 371–375.
11. Hutcheson IR, Griffith TM. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol 1991; 261(1 Pt 2): H257-H262. Dostupné z DOI: <http://dx.doi.org/10.1152/ajpheart.1991.261.1.H257>.
12. Thacher T, Gambillara V, da Silva RF et al. Reduced cyclic stretch, endothelial dysfunction, and oxidative stress: an ex vivo model. Cardiovasc Pathol 2010; 19(4): e91-e98. Dostupné z DOI: <http://dx.doi.org/10.1016/j.carpath.2009.06.007>.
13. Baba HA, Wohlschlaeger J. Morphological and molecular changes of the myocardium after left ventricular mechanical support. Curr Cardiol Rev 2008; 4(3): 157–169. Dostupné z DOI: <http://dx.doi.org/10.2174/157340308785160606>.
14. Templeton DL, Mosser KH, Chen CN et al. Effects of left ventricular assist device (LVAD) placement on myocardial oxidative stress markers. Heart Lung Circ 2012; 21(9): 586–597. Dostupné z DOI: <http://dx.doi.org/10.1016/j.hlc.2012.04.016>.
15. Segura AM, Gregoric I, Radovancevic R et al. Morphologic changes in the aortic wall media after support with a continuous-flow left ventricular assist device. J Heart Lung Transplant 2013; 32(11): 1096–1100. Dostupné z DOI: <http://dx.doi.org/10.1016/j.healun.2013.07.007>.
16. Prescimone T, Masotti S, D‘Amico A et al. Cardiac molecular markers of programmed cell death are activated in end-stage heart failure patients supported by left ventricular assist device. Cardiovasc Pathol 2014; 23(5): 272–282. Dostupné z DOI: <http://dx.doi.org/10.1016/j.carpath.2014.04.003>.
17. Ivak P, Pitha J, Wohlfahrt P et al. Endothelial dysfunction expressed as endothelial microparticles in patients with end-stage heart failure. Physiol Res 2014; 63(Suppl 3): S369-S373.
18. Madaric J, Valachovicova M, Paulis L et al. Improvement in asymmetric dimethylarginine and oxidative stress in patients with limb salvage after autologous mononuclear stem cell application for critical limb ischemia. Stem Cell Res Ther 2017; 8(1): 165. Dostupné z DOI: <http://dx.doi.org/10.1186/s13287–017–0622–2>.
19. Talapková R, Hudecek J, Sinák I et al. The salvage of ischaemic limb by therapeutical angiogenesis. Vnitř Lék 2009; 55(3): 179–183.
20. Procházka V, Gumulec J, Chmelová J et al. Autologous bone marrow stem cell transplantation in patients with end-stage chronical critical limb ischemia and diabetic foot. Vnitř Lék 2009; 55(3): 173–178.
21. Ivak P, Pitha J, Wohlfahrt P et al. Biphasic response in number of stem cells and endothelial progenitor cells after left ventricular assist device implantation: A 6 month follow up. Int J Cardiol 2016; 218: 98–103. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2016.05.063>.
22. Ahmed AS, Sheng MH, Wasnik S et al. Effect of aging on stem cells. World J Exp Med 2017; 7(1): 1–10. Dostupné z DOI: <http://dx.doi.org/10.5493/wjem.v7.i1.1>.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2018 Issue 1
Most read in this issue
- Familial combined hyperlipidemia – the most common genetic dyslipidemia in population and in patients with premature atherothrombotic cardiovascular disease
- Epidemiology of hypercholesterolemia
- Diabetic dyslipidemia and microvascular complications of diabetes
- The current position of hydrochlorothiazide among thiazide and thiazide-like diuretics