Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation
Autoři:
Andrée-Anne Grosset aff001; Frédérick Dallaire aff001; Tien Nguyen aff001; Mirela Birlea aff001; Jahg Wong aff001; François Daoust aff001; Noémi Roy aff001; André Kougioumoutzakis aff001; Feryel Azzi aff001; Kelly Aubertin aff001; Samuel Kadoury aff001; Mathieu Latour aff003; Roula Albadine aff003; Susan Prendeville aff007; Paul Boutros aff008; Michael Fraser aff008; Rob G. Bristow aff013; Theodorus van der Kwast aff013; Michèle Orain aff014; Hervé Brisson aff014; Nazim Benzerdjeb aff001; Hélène Hovington aff014; Alain Bergeron aff014; Yves Fradet aff014; Bernard Têtu aff014; Fred Saad aff001; Frédéric Leblond aff001; Dominique Trudel aff001
Působiště autorů:
Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
aff001; Institut du cancer de Montréal, Montreal, Quebec, Canada
aff002; Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
aff003; Department of Computer Engineering and Software Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
aff004; Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec, Canada
aff005; Department of Pathology, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
aff006; Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
aff007; Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
aff008; Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
aff009; Department of Urology, University of California, Los Angeles, Los Angeles, California, United States of America
aff010; Institute for Precision Health, University of California, Los Angeles, Los Angeles, California, United States of America
aff011; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, United States of America
aff012; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
aff013; Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
aff014; Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
aff015; Department of Surgery, Université Laval, Quebec City, Quebec, Canada
aff016
Vyšlo v časopise:
Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation. PLoS Med 17(8): e32767. doi:10.1371/journal.pmed.1003281
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003281
Souhrn
Background
Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant for which therapeutic options are now available. Our aim was to identify IDC-P with Raman micro-spectroscopy (RμS) and machine learning technology following a protocol suitable for routine clinical histopathology laboratories.
Methods and findings
We used RμS to differentiate IDC-P from PC, as well as PC and IDC-P from benign tissue on formalin-fixed paraffin-embedded first-line radical prostatectomy specimens (embedded in tissue microarrays [TMAs]) from 483 patients treated in 3 Canadian institutions between 1993 and 2013. The main measures were the presence or absence of IDC-P and of PC, regardless of the clinical outcomes. The median age at radical prostatectomy was 62 years. Most of the specimens from the first cohort (Centre hospitalier de l’Université de Montréal) were of Gleason score 3 + 3 = 6 (51%) while most of the specimens from the 2 other cohorts (University Health Network and Centre hospitalier universitaire de Québec–Université Laval) were of Gleason score 3 + 4 = 7 (51% and 52%, respectively). Most of the 483 patients were pT2 stage (44%–69%), and pT3a (22%–49%) was more frequent than pT3b (9%–12%). To investigate the prostate tissue of each patient, 2 consecutive sections of each TMA block were cut. The first section was transferred onto a glass slide to perform immunohistochemistry with H&E counterstaining for cell identification. The second section was placed on an aluminum slide, dewaxed, and then used to acquire an average of 7 Raman spectra per specimen (between 4 and 24 Raman spectra, 4 acquisitions/TMA core). Raman spectra of each cell type were then analyzed to retrieve tissue-specific molecular information and to generate classification models using machine learning technology. Models were trained and cross-validated using data from 1 institution. Accuracy, sensitivity, and specificity were 87% ± 5%, 86% ± 6%, and 89% ± 8%, respectively, to differentiate PC from benign tissue, and 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively, to differentiate IDC-P from PC. The trained models were then tested on Raman spectra from 2 independent institutions, reaching accuracies, sensitivities, and specificities of 84% and 86%, 84% and 87%, and 81% and 82%, respectively, to diagnose PC, and of 85% and 91%, 85% and 88%, and 86% and 93%, respectively, for the identification of IDC-P. IDC-P could further be differentiated from high-grade prostatic intraepithelial neoplasia (HGPIN), a pre-malignant intraductal proliferation that can be mistaken as IDC-P, with accuracies, sensitivities, and specificities > 95% in both training and testing cohorts. As we used stringent criteria to diagnose IDC-P, the main limitation of our study is the exclusion of borderline, difficult-to-classify lesions from our datasets.
Conclusions
In this study, we developed classification models for the analysis of RμS data to differentiate IDC-P, PC, and benign tissue, including HGPIN. RμS could be a next-generation histopathological technique used to reinforce the identification of high-risk PC patients and lead to more precise diagnosis of IDC-P.
Klíčová slova:
Biomarkers – Cancer detection and diagnosis – Lesions – Lymphocytes – Machine learning – Pathologists – Prostate cancer – Prostate gland
Zdroje
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. doi: 10.3322/caac.21590 31912902
2. Nuhn P, De Bono JS, Fizazi K, Freedland SJ, Grilli M, Kantoff PW, et al. Update on systemic prostate cancer therapies: management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur Urol. 2019;75:88–99. doi: 10.1016/j.eururo.2018.03.028 29673712
3. Chua MLK, van der Kwast TH, Bristow RG. Intraductal carcinoma of the prostate: anonymous to ominous. Eur Urol. 2017;72:496–8. doi: 10.1016/j.eururo.2017.04.004 28416351
4. Egevad L, Judge M, Delahunt B, Humphrey PA, Kristiansen G, Oxley J, et al. Dataset for the reporting of prostate carcinoma in core needle biopsy and transurethral resection and enucleation specimens: recommendations from the International Collaboration on Cancer Reporting (ICCR). Pathology. 2019;51:11–20. doi: 10.1016/j.pathol.2018.10.003 30477882
5. Bottcher R, Kweldam CF, Livingstone J, Lalonde E, Yamaguchi TN, Huang V, et al. Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer. 2018;18:8. doi: 10.1186/s12885-017-3976-z 29295717
6. Elfandy H, Armenia J, Pederzoli F, Pullman E, Pertega-Gomes N, Schultz N, et al. Genetic and epigenetic determinants of aggressiveness in cribriform carcinoma of the prostate. Mol Cancer Res. 2019;17:446–56. doi: 10.1158/1541-7786.MCR-18-0440 30333152
7. Bhandari V, Hoey C, Liu LY, Lalonde E, Ray J, Livingstone J, et al. Molecular landmarks of tumor hypoxia across cancer types. Nat Genet. 2019;51:308–18. doi: 10.1038/s41588-018-0318-2 30643250
8. Taylor RA, Fraser M, Livingstone J, Espiritu SM, Thorne H, Huang V, et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun. 2017;8:13671. doi: 10.1038/ncomms13671 28067867
9. Houlahan KE, Salmasi A, Sadun TY, Pooli A, Felker ER, Livingstone J, et al. Molecular hallmarks of multiparametric magnetic resonance imaging visibility in prostate cancer. Eur Urol. 2019;76:18–23. doi: 10.1016/j.eururo.2018.12.036 30685078
10. Iczkowski KA, Egevad L, Ma J, Harding-Jackson N, Algaba F, Billis A, et al. Intraductal carcinoma of the prostate: interobserver reproducibility survey of 39 urologic pathologists. Ann Diagn Pathol. 2014;18:333–42. doi: 10.1016/j.anndiagpath.2014.08.010 25263387
11. Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE. The 2016 WHO classification of tumours of the urinary system and male genital organs—part B: prostate and bladder tumours. Eur Urol. 2016;70:106–19. doi: 10.1016/j.eururo.2016.02.028 26996659
12. Gandhi JS, Smith SC, Paner GP, McKenney JK, Sekhri R, Osunkoya AO, et al. Reporting practices and resource utilization in the era of intraductal carcinoma of the prostate: a survey of genitourinary subspecialists. Am J Surg Pathol. 2020;44:673–80. doi: 10.1097/PAS.0000000000001417 31876580
13. Porter LH, Lawrence MG, Ilic D, Clouston D, Bolton DM, Frydenberg M, et al. Systematic review links the prevalence of intraductal carcinoma of the prostate to prostate cancer risk categories. Eur Urol. 2017;72:492–5. doi: 10.1016/j.eururo.2017.03.013 28342640
14. Yamamoto A, Kato M, Tsuzuki T, Gotoh M, Matsukawa Y, Sassa N, et al. Effect of chemotherapy on survival for intraductal carcinoma of the prostate (IDC-P) in patients with castration-resistant prostate cancer. J Clin Oncol. 2017;35:e601.
15. Porter LH, Hashimoto K, Lawrence MG, Pezaro C, Clouston D, Wang H, et al. Intraductal carcinoma of the prostate can evade androgen deprivation, with emergence of castrate-tolerant cells. BJU Int. 2018;121:971–8. doi: 10.1111/bju.14043 28977728
16. Trinh VQ, Benzerdjeb N, Chagnon-Monarque S, Dionne N, Delouya G, Kougioumoutzakis A, et al. Retrospective study on the benefit of adjuvant radiotherapy in men with intraductal carcinoma of prostate. Radiat Oncol. 2019;14:60. doi: 10.1186/s13014-019-1267-3 31018850
17. Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350:aaa8870. doi: 10.1126/science.aaa8870 26612955
18. Gardecki JA, Singh K, Wu CL, Tearney GJ. Imaging the human prostate gland using 1–mum-resolution optical coherence tomography. Arch Pathol Lab Med. 2019;143:314–8. doi: 10.5858/arpa.2018-0135-OA 30550349
19. Kallepitis C, Bergholt MS, Mazo MM, Leonardo V, Skaalure SC, Maynard SA, et al. Quantitative volumetric Raman imaging of three dimensional cell cultures. Nat Commun. 2017;8:14843. doi: 10.1038/ncomms14843 28327660
20. Lu FK, Basu S, Igras V, Hoang MP, Ji M, Fu D, et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A. 2015;112:11624–9. doi: 10.1073/pnas.1515121112 26324899
21. Wei M, Shi L, Shen Y, Zhao Z, Guzman A, Kaufman LJ, et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A. 2019;116:6608–17. doi: 10.1073/pnas.1813044116 30872474
22. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11:664–87. doi: 10.1038/nprot.2016.036 26963630
23. Stone N, Kendall C, Shepherd N, Crow P, Barr H. Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J Raman Spectrosc. 2002;33:564–73.
24. Patel II, Martin FL. Discrimination of zone-specific spectral signatures in normal human prostate using Raman spectroscopy. Analyst. 2010;135:3060–9. doi: 10.1039/c0an00518e 20949203
25. Taleb A, Diamond J, McGarvey JJ, Beattie JR, Toland C, Hamilton PW. Raman microscopy for the chemometric analysis of tumor cells. J Phys Chem B. 2006;110:19625–31. doi: 10.1021/jp061981q 17004830
26. Crow P, Barrass B, Kendall C, Hart-Prieto M, Wright M, Persad R, et al. The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines. Br J Cancer. 2005;92:2166–70. doi: 10.1038/sj.bjc.6602638 15928665
27. Wang L, He D, Zeng J, Guan Z, Dang Q, Wang X, et al. Raman spectroscopy, a potential tool in diagnosis and prognosis of castration-resistant prostate cancer. J Biomed Opt. 2013;18:87001. doi: 10.1117/1.JBO.18.8.087001 23907278
28. Devpura S, Thakur JS, Sarkar FH, Sakr WA, Naik VM, Naik R. Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy. Vib Spectrosc. 2010;53:227–32.
29. Tollefson M, Magera J, Sebo T, Cohen J, Drauch A, Maier J, et al. Raman spectral imaging of prostate cancer: can Raman molecular imaging be used to augment standard histopathology? BJU Int. 2010;106:484–8. doi: 10.1111/j.1464-410X.2010.09185.x 20201840
30. Crow P, Stone N, Kendall CA, Uff JS, Farmer JA, Barr H, et al. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. Br J Cancer. 2003;89:106–8. doi: 10.1038/sj.bjc.6601059 12838309
31. Samaratunga H, Montironi R, True L, Epstein JI, Griffiths DF, Humphrey PA, et al. International Society of Urological Pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens. Working group 1: specimen handling. Mod Pathol. 2011;24:6–15. doi: 10.1038/modpathol.2010.178 20834234
32. Grosset AA, Loayza-Vega K, Adam-Granger E, Birlea M, Gilks B, Nguyen B, et al. Hematoxylin and eosin counterstaining protocol for immunohistochemistry interpretation and diagnosis. Appl Immunohistochem Mol Morphol. 2019;27:558–63. doi: 10.1097/PAI.0000000000000626 29271792
33. Hickman RA, Yu H, Li J, Kong M, Shah RB, Zhou M, et al. Atypical intraductal cribriform proliferations of the prostate exhibit similar molecular and clinicopathologic characteristics as intraductal carcinoma of the prostate. Am J Surg Pathol. 2017;41:550–6. doi: 10.1097/PAS.0000000000000794 28009609
34. Grosset AA, Dallaire F, Nguyen T, Birlea M, Wong J, Daoust F, et al. Data from: Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: a diagnostic accuracy case-control study with multicohort validation. Dryad. 2020 Jul 16. doi: 10.5061/dryad.cjsxksn3p
35. Perez-Pueyo R, Soneira MJ, Ruiz-Moreno S. Morphology-based automated baseline removal for Raman spectra of artistic pigments. Appl Spectrosc. 2010;64:595–600. doi: 10.1366/000370210791414281 20537226
36. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.
37. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4:844–7. doi: 10.1038/nm0798-844 9662379
38. Datta MW, True LD, Nelson PS, Amin MB. The role of tissue microarrays in prostate cancer biomarker discovery. Adv Anat Pathol. 2007;14:408–18. doi: 10.1097/PAP.0b013e318155709a 18049130
39. Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW. Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev. 2014;33:673–93. doi: 10.1007/s10555-013-9489-6 24510129
40. Talari ACS, Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2015;50:46–111.
41. Epstein JI, Egevad L, Humphrey PA, Montironi R, Members of the ISUP Immunohistochemistry in Diagnostic Urologic Pathology Group. Best practices recommendations in the application of immunohistochemistry in the prostate: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol. 2014;38:e6–19. doi: 10.1097/PAS.0000000000000238 25029122
42. Haffner MC, Weier C, Xu MM, Vaghasia A, Gurel B, Gumuskaya B, et al. Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (PIN) and intraductal carcinoma through retrograde glandular colonization. J Pathol. 2016;238:31–41. doi: 10.1002/path.4628 26331372
43. Lotan TL, Gumuskaya B, Rahimi H, Hicks JL, Iwata T, Robinson BD, et al. Cytoplasmic PTEN protein loss distinguishes intraductal carcinoma of the prostate from high-grade prostatic intraepithelial neoplasia. Mod Pathol. 2013;26:587–603. doi: 10.1038/modpathol.2012.201 23222491
44. Schneider TM, Osunkoya AO. ERG expression in intraductal carcinoma of the prostate: comparison with adjacent invasive prostatic adenocarcinoma. Mod Pathol. 2014;27:1174–8. doi: 10.1038/modpathol.2013.248 24406865
45. Morais CL, Han JS, Gordetsky J, Nagar MS, Anderson AE, Lee S, et al. Utility of PTEN and ERG immunostaining for distinguishing high-grade PIN from intraductal carcinoma of the prostate on needle biopsy. Am J Surg Pathol. 2015;39:169–78. doi: 10.1097/PAS.0000000000000348 25517949
46. Downes MR, Satturwar S, Trudel D, van der Kwast TH. Evaluation of ERG and PTEN protein expression in cribriform architecture prostate carcinomas. Pathol Res Pract. 2017;213:34–8. doi: 10.1016/j.prp.2016.10.007 27913052
47. Zhao T, Liao B, Yao J, Liu J, Huang R, Shen P, et al. Is there any prognostic impact of intraductal carcinoma of prostate in initial diagnosed aggressively metastatic prostate cancer? Prostate. 2015;75:225–32. doi: 10.1002/pros.22906 25307858
48. Chen Z, Chen N, Shen P, Gong J, Li X, Zhao T, et al. The presence and clinical implication of intraductal carcinoma of prostate in metastatic castration resistant prostate cancer. Prostate. 2015;75:1247–54. doi: 10.1002/pros.23005 25917338
49. Stone N, Hart Prieto MC, Crow P, Uff J, Ritchie AW. The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies. Anal Bioanal Chem. 2007;387:1657–68. doi: 10.1007/s00216-006-0937-9 17123068
50. Trudel D, Downes MR, Sykes J, Kron KJ, Trachtenberg J, van der Kwast TH. Prognostic impact of intraductal carcinoma and large cribriform carcinoma architecture after prostatectomy in a contemporary cohort. Eur J Cancer. 2014;50:1610–6. doi: 10.1016/j.ejca.2014.03.009 24703897
51. Jermyn M, Desroches J, Aubertin K, St-Arnaud K, Madore WJ, De Montigny E, et al. A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology. Phys Med Biol. 2016;61:R370–400. doi: 10.1088/0031-9155/61/23/R370 27804917
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 8
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- „Jednohubky“ z klinického výzkumu – 2024/44
- Je libo čepici místo mozkového implantátu?
Nejčtenější v tomto čísle
- Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest–posttest comparison group study
- Coming together to improve access to medicines: The genesis of the East African Community’s Medicines Regulatory Harmonization initiative
- Age and the association between apolipoprotein E genotype and Alzheimer disease: A cerebrospinal fluid biomarker–based case–control study
- A clinical algorithm for same-day HIV treatment initiation in settings with high TB symptom prevalence in South Africa: The SLATE II individually randomized clinical trial