Chondrogenic potential of intramembranous skeletal bones
Autoři:
Korenkov Oleksii; Larina Kateryna
Působiště autorů:
Sumy State University, Sumy, Ukraine
Vyšlo v časopise:
Clinical Osteology 2022; 27(4): 126-130
Kategorie:
Přehledové články
Souhrn
The analysis of scientific sources regarding the presence of chondrogenic potential in intramembranous bones was carried out. Detailed information is provided on the elements of the general conservative program of enchondral and intramembranous ossification, on the conditions for the formation of cartilage tissue in the cranial sutures and in the area of reparative regeneration of flat bones of the skull, as well as on the possibility of cartilage matrices to have an optimizing effect on reparative osteogenesis in the intramembranous bones of the skeleton.
Zdroje
1. Inoue S, Takito J, Nakamura M. Site-Specific Fracture Healing: Comparison between Diaphysis and Metaphysis in the Mouse Long Bone. Int J Mol Sci 2021; 22(17): 9299. Dostupné z DOI: <http://dx.doi.org/10.3390/ijms22179299>.
2. Eames BF, Helms JA. Conserved molecular program regulating cranial and appendicular skeletogenesis. Dev Dyn 2004; 231(1): 4–13. Dostupné z DOI: <http://dx.doi.org/10.1002/dvdy.20134>.
3. He F, Soriano P. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification. Development 2017; 144(21): 4026–4036. Dostupné z DOI: <http://dx.doi.org/10.1242/dev.151068>.
4. McBratney-Owen B, Iseki S, Bamforth SD et al. Development and tissue origins of the mammalian cranial base. Dev Biol 2008; 322(1): 121–132. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ydbio.2008.07.016>.
5. Govindarajan V, Overbeek PA. FGF9 can induce endochondral ossification in cranial mesenchyme. BMC Dev Biol 2006; 6: 7. Dostupné z DOI: <http://dx.doi.org/10.1186/1471–213X-6–7>.
6. Omelyanenko NP, Slutsky LI, Mironov SP (eds). Histophysiology, Biochemistry, Molecular Biology Boca Raton: CRC Press: 2013. ISBN 978–1482203585.
7. Eames BF, de la Fuente L, Helms JA. Molecular ontogeny of the skeleton. Birth Defects Research Part C 2003; 6 9(2): 9 3–101. Dostupné z DOI: <http://dx.doi.org/10.1002/bdrc.10016>.
8. Abzhanov A, Rodda SJ, McMahon AP et al. Regulation of skeletogenic differentiation in cranial dermal bone. Development 2007; 134(17): 3133–3144. Dostupné z DOI: <http://dx.doi.org/10.1242/dev.002709>.
9. Nah HD, Pacifici M, Gerstenfeld LC et al. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development. J Bone Miner Res 2000; 15(3): 522–533. Dostupné z DOI: <http://dx.doi.org/10.1359/jbmr.2000.15.3.522>.
10. Aberg T, Rice R, Rice D et al. Chondrogenic potential of mouse calvarial mesenchyme. J Histochem Cytochem 2005; 53(5): 653–663. Available from DOI: <http://dx.doi.org/10.1369/jhc.4A6518.2005>.
11. Zhao H, Feng J, Ho TV et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 2015;17(4): 386–396. Dostupné z DOI: <http://dx.doi.org/10.1038/ncb3139>.
12. Cohen MM. The new bone biology: pathologic, molecular, and clinical correlates. A m J Med G enet A 2006; 140(23): 2 646–2706. Dostupné z DOI: <http://dx.doi.org/10.1002/ajmg.a.31368>.
13. Sahar DE, Longaker MT, Quarto N. Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Dev Biol 2005; 280(2): 344–361. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ydbio.2005.01.022>.
14. Moenning A, Jäger R, Egert A et al. Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol 2009; 2 9(3): 8 81–891. Dostupné z DOI: < http://dx.doi.org/10.1128/MCB.00885–08>.
15. Holmes G, Basilico C. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev Biol 2012; 368(2): 283–293. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ydbio.2012.05.026>.
16. Rice DPC, Connor EC, Veltmaat JM et al. Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation. Hum Mol Genet 2010; 19(17): 3457–3467. Dostupné z DOI: <http://dx.doi.org/10.1093/hmg/ddq258>.
17. Zhang H, Shi X, Wang L et al. Intramembranous ossification and endochondral ossification are impaired differently between glucocorticoid-induced osteoporosis and estrogen deficiency-induced osteoporosis. Sci Rep 2 018; 8 (1): 3 867. Dostupné z DOI: < http://dx.doi.org/10.1038/s41598–018–22095–1>.
18. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 2015; 11(1): 45–54. Dostupné z DOI: <http://dx.doi.org/10.1038/nrrheum.2014.164>.
19. Zhou X, von der Mark K, Henry S et al. Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice. PLoS Genet 2014; 10(12): e1004820. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pgen.1004820>.
20. Hermann CD, Lawrence KA, Olivares-Navarrete R et al. Rapid Re-synostosis Following Suturectomy in Pediatric Mice is Age and Location Dependent. Bone 2013; 53(1): 284–293. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bone.2012.11.019>.
21. Inoue S, Fujikawa K, Matsuki-Fukushima M et al. Repair processes of flat bones formed via intramembranous versus endochondral ossification. J Oral Biosci 2 020; 62(1): 5 2–57. Dostupné z DOI: < http://dx.doi.org/10.1016/j.job.2020.01.007>.
22. Lim J, Lee J, Yun HS et al. Comparison of bone regeneration rate in flat and long bone defects: Calvarial and tibial bone. Tissue Eng Regen Med 2013; 10(6): 336–340. Dostupné z DOI: <https://doi.org/10.1007/s13770–013–1094–9>.
23. Girgis FG, Pritchard JJ. Experimental production of cartilage during the repair of fractures of the skull vault in rats. J Bone Joint Surg Br 1958; 4 0-B(2): 2 74–281. Dostupné z DOI: <http://dx.doi.org/10.1302/0301–620X.40B2.274>.
24. Schmitz JP, Schwartz Z, Hollinger JO et al. Characterization of rat calvarial nonunion defects. Acta Anat (Basel) 1990; 138(3): 185–192. Dostupné z DOI: <http://dx.doi.org/10.1159/000146937>.
25. Kim WS, Vacanti CA, Upton J et al. Bone defect repair with tissue-engineered cartilage. Plast Reconstr Surg 1994; 94(5): 580–584. Dostupné z DOI: <http://dx.doi.org/10.1097/00006534–199410000–00002>.
26. Doan L, Kelley C, Luong H et al. Duke Engineered cartilage heals skull defects. Am J Ortho Dentofacial Orthop 2010; 137(2): 162.E1–9. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ajodo.2009.06.018>.
27. Freeman FE, Brennan MÁ, Browe DC et al. A Developmental Engineering-Based Approach to Bone Repair: Endochondral Priming Enhances Vascularization and New Bone Formation in a Critical Size Defect. Front Bioeng Biotechnol 2020; 8: 230. Dostupné z DOI: <http://dx.doi.org/10.3389/fbioe.2020.00230>.
28. Fu R, Liu C, Li J et al. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J Tissue Eng 2021;12: 20417314211004211. Dostupné z DOI: <https://doi.org/10.1177/20417314211004211>.
29. Matsiko A, Thompson EM, Lloyd-Griffith C et al. An endochondral ossification approach to early stage bone repair: Use of tissue-engineered hypertrophic cartilage constructs as primordial templates for weight-bearing bone repair. J Tissue Eng Regen Med 2018; 12(4): e2147-e2150. Dostupné z DOI: <http://dx.doi.org/10.1002/term.2638>.
30. Sun MM, Beier F. Chondrocyte hypertrophy in skeletal development, growth, and disease. Birth Defects Res C Embryo Today 2014; 1 02(1): 7 4–82. Dostupné z DOI: < http://dx.doi.org/10.1002/bdrc.21062>.
31. Bahney CS, Zondervan RL, Allison P et al. Cellular Biology of Fracture Healing. J Orthop Res 2019; 37(1): 35–50. Dostupné z DOI: <http://dx.doi.org/10.1002/jor.24170>.
32. Maes C, Kobayashi T, Selig MK et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 2010; 19(2): 329–344. Dostupné z DOI: <http://dx.doi.org/10.1016/j.devcel.2010.07.010>.
33. Kahn AJ, Simmons DJ. Chondrocyte-to-osteocyte transformation in grafts of perichondrium-free epiphyseal cartilage. Clin Orthop Relat Res 1977; (129): 299–304. Dostupné z DOI: <http://dx.doi.org/10.1097/00003086–197711000–00042>.
34. Scammell BE, Roach HI. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes. J Bone Miner Res 1996; 11(6): 737–745. Dostupnéz DOI: <http://dx.doi.org/10.1002/jbmr.5650110604>.
35. Roach HI. Trans-differentiation of hypertrophic chondrocytes into cells capable of producing a mineralized bone matrix. Bone Miner 1992; 19(1): 1–20. Dostupné z DOI: <http://dx.doi.org/10.1016/0169–6009(92)90840-a>.
36. Yang L, Tsang KY, Tang HC et al. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci 2014; 111(33): 12097–12102. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.1302703111>.
Štítky
Biochemie Dětská gynekologie Dětská radiologie Dětská revmatologie Endokrinologie Gynekologie a porodnictví Interní lékařství Ortopedie Praktické lékařství pro dospělé Radiodiagnostika Rehabilitační a fyzikální medicína Revmatologie Traumatologie OsteologieČlánek vyšel v časopise
Clinical Osteology
2022 Číslo 4
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Cinitaprid – nové bezpečné prokinetikum s odlišným mechanismem účinku
Nejčtenější v tomto čísle
- Osteoporóza u mladých dospělých osob
- Chondrogenic potential of intramembranous skeletal bones
- Cirkadiální rytmy a kostní metabolizmus
- Má hormonální substituční terapie své místo v prevenci osteoporózy?