#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SROVNÁNÍ RŮZNÝCH PŘÍSTUPŮ HRANOVÉ DETEKCE KONČETINOVÝCH TEPEN V PODÉLNÉM ŘEZU ULTRAZVUKOVÉHO OBRAZU


Authors: Martin Sedlář 1;  Vojtěch Mornstein 1
Authors‘ workplace: Biofyzikální ústav LF MU, Brno, Česká republika 1
Published in: Lékař a technika - Clinician and Technology No. 1, 2013, 43, 11-14
Category: Original research

Overview

Automatická detekce tepen v ultrazvukovém obraze může být velmi užitečným nástrojem při hodnocení funkčního stavu a diagnostice mnoha onemocnění vaskulárního systému. Hranová reprezentace obrazu může poskytovat významnou informaci o lumenu tepny a stavbě tepenné stěny nebo o průběhu a větvení tepen. U dynamických studií lze metody hranové detekce s výhodou využít také k hodnocení mechanických a elastických vlastností tepen.

Hranovou detekci tepen v podélném řezu ultrazvukového obrazu jsme provedli pomocí různých běžně používaných hranových operátorů a detektorů založených na první derivaci (Roberts, Sobel, Prewitt, Kirsch, Robinson) nebo druhé derivaci (Laplace, LoG) obrazové funkce. Pro srovnání jsme zvolili také výsledky detekce hran v obraze metodou prostého prahování.

Pro lepší výsledky hranové detekce jsme na vstupní obraz aplikovali některé základní metody předzpracování obrazu (doostření, vyhlazení, úprava jasu, úprava spektra) a prostředky matematické morfologie (eroze, dilatace, uzavření, otevření). Těmito postupy jsme se snažili maximálně eliminovat šum a rušivé struktury v obraze, které způsobovaly chybnou detekci hran a negativně ovlivňovaly výsledek.

Všechny aplikované postupy poskytly uspokojivé výsledky detekce. Volba nejoptimálnějšího způsobu hranové detekce závisí na konkrétní situaci a je podmíněna jednak vhodně zvolenými parametry v jednotlivých krocích detekčního algoritmu, jednak také typem, kvalitou a akvizičními parametry konkrétního vstupního ultrazvukového obrazu.

Klíčová slova:
ultrazvuk, končetinové tepny, hranová detekce, hranové operátory


Sources

[1] Hlaváč, V., Sedláček, M.: Zpracování signálů a obrazů. Praha: ČVUT, 2007, 255 s. ISBN 978-80-01-03110-0.

[2] Chudý, O., Doubrava, K.: Automatická detekce přírůstku trhliny pomocí digitálního zpracování obrazu. Konference studentské tvůrčí činnosti [online], 2012 [cit. 2012-05-14]. Dostupné z: http://stc.fs.cvut.cz/pdf12/2568.pdf.

[3] Sukkaew, L., Uyyanonvara, B., Barman, S.: Comparison of Edge Detection Techniques on Vessel Detection of Infant’s Retinal Image. [online], [cit. 2012-05-14]. Dostupné z: http://www.ijcim.th.org/SpecialEditions/v13nSP2/pdf/p6.1-5-Comparison of Edge Detection Techniques.pdf.

[4] Vacarda, M.: Detekce jasových změn v obrazu pomocí lokálních spektrálních hustot energie. Automatizace [online], 2007, roč. 50, č. 12, s. 772-775 [cit. 2012-05-14]. Dostupné z: http://www.automatizace.cz/article.php?a=1977.

Labels
Biomedicine
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#