Immunofluorescence analysis of proapoptotic signaling molecules in human melanoma cells after photodynamic treatment
Authors:
Robert Bajgar 1; Hana Kolářová 1; Svatopluk Binder 1; Adéla Dašková 1,2; Hana Lenobelová 1; Klára Pížová 1,2; Kateřina Tománková 1
Authors‘ workplace:
Ústav lékařské biofyziky, Lékařská fakulta, Univerzita Palackého, Olomouc
1; Ústav molekulární a translační medicíny, Lékařská fakulta, Univerzita Palackého, Olomouc
2
Published in:
Lékař a technika - Clinician and Technology No. 1, 2013, 43, 15-18
Category:
Original research
Overview
Photodynamic therapy (PDT) is connected with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason, why photodynamic therapy has also found its application in treatment of different oncological, cardiovascular, skin and eye diseases. The cell death after PDT is mediated by an apoptotic and/or necrotic process including activation of various biomolecules.
In the presented study we have used immunofluorescence method to detect caspase 3 and 9, poly ADP-ribose polymerase (PARP) in their active forms, and release of the cytochrome c as the proapoptotic protein after photodynamic treatment of human melanoma cells.
Keywords:
apoptosis, photodynamic therapy, enzyme-linked immunosorbent assay (ELISA)
Sources
[1] Portt, L., Norman, G., Clapp, C., Greenwood, M., Greenwood, M.T.: Anti-apoptosis and Cell Survival: a Review, Biochim. Biophys. Acta, 1831 (2011), pp. 238-259.
[2] Mahoney, J.A., Rosen, A.: Apoptosis and Autoimmunity, Curr. Opin. Immunol., 17 (2005), pp. 583-588.
[3] Salvesen, G.S., Dixit, V.M.: Caspases: Intracellular Signaling by Proteolysis, Cell, 91 (1997), pp. 443-446.
[4] Thornberry, N.A., Lazebnik, Y.: Caspases: Enemies Within, Science, 281 (1998), pp. 1312-1316.
[5] Chowdhury, I., Tharakan, B., Bhat, G.K.: Caspases - an Update, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 151 (2008), pp. 10-27.
[6] Yang, L.: Dysfunction of the Apoptotic Pathway in Cancer Cells. In: Application of Apoptosis to Cancer Treatment (Ed: M. Sluyser), Springer, Dordrecht, 2005, pp. 1–28.
[7] Fischer, U., Janssen, K., Schulze-Osthoff, K.: Cutting-edge Apoptosis-based Therapeutics: a Panacea for Cancer?, BioDrugs, 21 (2007), pp. 273–297.
[8] Krestyn, E., Kolarova, H., Bajgar, R., Tomankova, K.: Photodynamic Properties of ZnTPPS(4), ClAlPcS(2) and ALA in Human Melanoma G361 Cells, Toxicol. In Vitro, 24 (2010), pp. 286-291.
[9] Amé, J.C., Spenlehauer, C., de Murcia, G.: The PARP Superfamily, Bioessays, 26 (2004), pp. 882-893.
[10] Otsuki, Y., Li, Z., Shibata, M.A.: Apoptotic Detection Methods - from Morphology to Gene, Prog. Histochem. Cytochem., 38 (2003), pp. 275-339.
[11] Willingham, M.C.: Cytochemical Methods for the Detection of Apoptosis, J. Histochem. Cytochem., 47 (1999), pp. 1101-1110.
[12] Huerta, S., Goulet, E.J., Huerta-Yepez, S., Livingston, E.H.: Screening and Detection of Apoptosis, J. Surg. Res., 139 (2007), pp. 143-156.
[13] Liu, X., Palma, J., Kinders, R., Shi, Y., Donawho, C., Ellis, P.A., Rodriguez, L.E., Colon-Lopez, M., Saltarelli, M,, LeBlond, D., Lin, C.T., Frost, D.J., Luo, Y., Giranda, V.L.: An Enzyme-linked Immunosorbent Poly(ADP-ribose) Polymerase Biomarker Assay for Clinical Trials of PARP Inhibitors, Anal. Biochem., 381 (2008), pp. 240-247.
[14] Saunders, P.A., Cooper, J.A., Roodell, M.M., Schroeder, D.A., Borchert, C.J., Isaacson, A.L., Schendel, M.J., Godfrey, K.G., Cahill, D.R., Walz, A.M., Loegering, R.T., Gaylord, H., Woyno, I.J., Kaluyzhny, A.E., Krzyzek, R.A., Mortari, F., Tsang, M., Roff, C.F.: Quantification of Active Caspase 3 in Apoptotic Cells, Anal. Biochem., 284 (2000), pp. 114-124.
[15] Ghavami, S., Hashemi, M., Ande, S.R., Yeganeh, B., Xiao, W., Eshraghi, M., Bus, C.J., Kadkhoda, K., Wiechec, E., Halayko, A.J., Los, M.: Apoptosis and Cancer: Mutations Within Caspase Genes, J. Med. Genet., 46 (2009), pp. 497–510.
[16] Kumar, S.: Caspase 2 in Apoptosis, the DNA Damage Response and Tumour Suppression: Enigma No More?, Nat. Rev. Cancor, 9 (2009), pp. 897–903.
[17] Janicke, R. U., Sprengart, M. L., Wati, M. R., Porter, A. G.: Caspase-3 is Required for DNA Fragmentation and Morphological Changes Associated with Apoptosis, J. Biol. Chem., 273 (1998), pp. 9357–9360.
[18] Kim, D.S., Jeon, S.E., Park, K.C.: Oxidation of Indole-3-acetic Acid by Horseradish Peroxidase Induces Apoptosis in G361 Human Melanoma Cells, Cell Signal., 16 (2004), pp. 81-88.
Labels
BiomedicineArticle was published in
The Clinician and Technology Journal
2013 Issue 1
Most read in this issue
- MOŽNOSTI VYUŽITÍ ANALÝZY PŘEŽÍVÁNÍ V BIOMEDICÍNĚ A TECHNICE
- 13C-methacetinový dechový test u pacientů s jaterní cirhózou a dekompenzovaným srdečním selháním
- Fototoxický vliv porfyrinových sensitizerů a viditelného záření na gram-pozitivní methicilin-rezistentní kmen S. aureus
- SROVNÁNÍ RŮZNÝCH PŘÍSTUPŮ HRANOVÉ DETEKCE KONČETINOVÝCH TEPEN V PODÉLNÉM ŘEZU ULTRAZVUKOVÉHO OBRAZU