#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic background of adrenal cortex tumours –  news


Authors: A. Kreze jr. 1;  P. Vaňuga 2;  M. Pura 2
Authors‘ workplace: II. interní oddělení FN Na Bulovce Praha, přednosta prim. MU Dr. Jiří Koskuba2 Endokrinologické oddelenie Národného endokrinologického a diabetologického ústavu Ľubochňa, Slovenská republika, prednosta prim. MU Dr. Peter Vaňuga, PhD. 1
Published in: Vnitř Lék 2010; 56(12): 1279-1285
Category: Celebration

Overview

This review has summarized the current knowledge of the genetic background of tumors originating from adrenocortical tissue, manifested as a part of inherited or familial syndromes, as well as specific forms of sporadic tumors caused by aberrant expression of G‑ protein coupled receptors.

Key words:
adrenal gland –  tumor –  genetics –  genes –  syndrome


Sources

1. Brandi ML, Gagel RF, Angeli A et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 2001; 86: 5658– 5671.

2. Koch CA, Pacak K, Chrousos GP. The molecular pathogenesis of hereditary and sporadic adrenocortical and adrenomedullary tumors. J Clin Endocrinol Metab 2002; 87: 5367– 5384.

3. Langer P, Cupisti K, Bartsch DK et al. Adrenal involvement in multiple endocrine neoplasia type 1. World J Surg 2002; 26: 891– 896.

4. Ozawa A, Agarwal SK, Mateo CM et al. The parathyroid/ pituitary variant of multiple endocrine neoplasia type 1 usually has causes other than p27Kip1 mutations. J Clin Endocrinol Metab 2007; 92: 1948– 1951.

5. Pellegata NS, Quintanilla‑ Martinez L,Siggelkow H et al. Germ‑line mutations in p27KiP1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006; 103: 15558– 15563.

6. Georgitsi M, Raitila A, Karhu A et al. Germline CDKN1B/ p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 2007; 92: 3321– 3325.

7. Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin‑dependent kinase inhibitor genes in MEN1 and related states. J Clin Endocrinol Metab 2009; 94: 1826– 1834.

8. Fritz A, Walch A, Piotrowska K et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res 2002; 62: 3048– 3051.

9. Franklin DS, Godfrey VL, O’Brien DA et al. Functional collaboration between different cyclin‑dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20: 6147– 6158.

10. Falchetti A, Brandi ML. Multiple endocrine neoplasia type I variants and phenocopies: more than a nosological issue? J Clin Endocrinol Metab 2009; 94: 1518– 1520.

11. Carney JA, Gordon H, Carpenter PC et al. The complex of myxomas, spotty pigmentation and endocrine overactivity. Medicine (Baltimore) 1985; 64: 270– 283.

12. Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab 2001; 86: 4041– 4046.

13. Lytras A, Tolis G. Reproductive disturbances in multiple neuroendocrine tumor syndromes. Endocr Relat Cancer 2009; 16: 1125– 1138.

14. Marx SJ, Simonds WF. Hereditary hormone excess: genes, molecular pathways, and syndromes. Endocr Rev 2005; 26: 615– 661.

15. Stratakis CA, Boikos SA. Genetics of adrenal tumors associated with Cushing’s syndrome: a new classification for bilateral adrenocortical hyperplasias. Nat Clin Pract Endocrinol Metab 2007; 3: 748– 757.

16. Stratakis CA. New genes and/ or molecular pathways associated with adrenal hyperplasias and related adrenocortical tumors. Mol Cell Endocrinol 2009; 300: 152– 157.

17. Bourdeau I, Lacroix A. Abberant hormone receptors in adrenal Cushing’s syndrome. Curr Opinion Endocrinol Diab 2002; 9: 230– 236.

18. Ye P, Mariniello B, Mantero F et al. G‑ protein‑coupled receptors in aldosterone‑ producing adenomas: a potential cause of hyperaldosteronism. J Endocrinol 2007; 195: 39– 48.

19. Zwermann O, Suttmann Y, Bidlingmaier M et al. Screening for membrane hormone receptor expression in primary aldosteronism. Eur J Endocrinol 2009; 160: 443– 451.

20. Sandrini F, Stratakis C. Clinical and molecular genetics of primary pigmented nodular adrenocortical disease. Arq Bras Endocrinol Metabol 2004; 48: 637– 641.

21. Horvath A, Bossis I, Giatzakis C et al. Large deletions of the PRKAR1A gene in Carney complex. Clin Cancer Res 2008; 14: 388– 395.

22. Sahut‑ Barnola I, de Joussineau C, Val P et al. Cushing’s syndrome and fetal features resurgence in adrenal cortex‑ specific Prkar1a knockout mice. PLoS Genet 2010; 6: e1000980.

23. Libé R, Fratticci A, Coste J et al. Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clin Cancer Res 2008; 14: 4016– 4024.

24. Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 1966; 95: 1109– 1119.

25. Lifton RP, Dluhy RG, Powers M et al. A chimaeric 11 beta‑hydroxylase/ aldosterone synthase gene causes glucocorticoid‑ remediable aldosteronism and human hypertension. Nature 1992; 355: 262– 265.

26. Pizzolo F, Trabetti E, Guarini P et al. Glucocorticoid remediable aldosteronism (GRA) screening in hypertensive patients from a primary care setting. J Hum Hypertens 2005; 19: 325– 327.

27. Geller DS, Zhang JJ, Wisgerhof MV et al. A novel form of human Mendelian hypertension featuring non‑glucocorticoid remediable aldosteronism. J Clin Endocrinol Metab 2008; 93: 3117– 3123.

28. Stowasser M, Gordon RD, Tunny TJ et al. Familial hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Clin Exp Pharmacol Physiol 1992; 19: 319– 322.

29. So A, Duffy DL, Gordon RD et al. Familial hyperaldosteronism type II is linked to the chromosome 7p22 region but also shows predicted heterogeneity. J Hypertens 2005; 23: 1477– 1484.

30. Jeske YW, So A, Kelemen L et al. Examination of chromosome 7p22 candidate genes RBaK, PMS2 and GNA12 in familial hyperaldosteronism type II. Clin Exp Pharmacol Physiol 2008; 35: 380– 385.

31. Goodarzi MO, Dawson DW, Li X et al. Virilization in bilateral macronodular adrenal hyperplasia controlled by luteinizing hormone. J Clin Endocrinol Metab 2003; 88: 73– 77.

32. Christopoulos S, Bourdeau I, Lacroix A.Aberrant expression of hormone receptors in adrenal Cushing’s syndrome. Pituitary 2004; 7: 225– 235.

33. Lacroix A, Ndiaye N, Tremblay J et al. Ectopic and abnormal hormone receptors in adrenal Cushing’s syndrome. Endocr Rev 2001; 22: 75– 110.

34. Lacroix A, Baldacchino V, Bourdeau Iet al. Cushing’s syndrome variants secondary to aberrant hormone receptors. Trends Endocrinol Metab 2004; 15: 375– 382.

35. Mazzuco TL, Chabre O, Feige JJ et al. Aberrant expression of human luteinizing hormone receptor by adrenocortical cells is sufficient to provoke both hyperplasia and Cushing’s syndrome features. J Clin Endocrinol Metab 2006; 91: 196– 203.

36. Assie G, Louiset E, Sturm N et al. Systematic analysis of G protein‑coupled receptor gene expression in adrenocorticotropin‑independent macronodular adrenocortical hyperplasia identifies novel targets for pharmacological control of adrenal Cushing’s syndrome. J Clin Endocrinol Metab 2010; 95: E253– E262.

37. Lefebvre H, Cartier D, Duparc C et al. Characterization of serotonin(4) receptors in adrenocortical aldosterone‑ producing adenomas: in vivo and in vitro studies. J Clin Endocrinol Metab 2002; 87: 1211– 1216.

38. Li S, Huang S, Peng SB. Overexpression of G protein‑coupled receptors in cancer cells: involvement in tumor progression. Int J Oncol 2005; 27: 1329– 1339.

39. Saner‑ Amigh K, Mayhew BA, Mantero Fet al. Elevated expression of luteinizing hormone receptor in aldosterone‑ producing adenomas. J Clin Endocrinol Metab 2006; 91: 1136– 1142.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 12

2010 Issue 12

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#