#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An analysis of neural activity of the human basal ganglia in dystonia: a review


Autoři: Ondřej Klempíř;  Radim Krupička
Působiště autorů: Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 2, 2019, 49, 66-71
Kategorie: Přehled


Zdroje
  1. Albanese A, Bhatia K, Bressman SB, Delong MR, Fahn S, Fung VS, Hallett M, Jankovic J, Jinnah HA, Klein C, Lang AE, Mink JW, Teller JK. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28:863–73.
  2. Fečíková A, Jech R, Čejka V, Čapek V, Šťastná D, Štětkářová I. Benefits of pallidal stimulation in dystonia are linked to cerebellar volume and cortical inhibition. Scientific Reports. 2018;8(1). https://doi.org/10.1038/s41598-018-34880-z
  3. O’Riordan S, Raymond D, Lynch T, Saunders-Pullman R, Bressman SB, Daly L, Hutchinson M. Age at onset as a factor in determining the phenotype of primarytorsion dystonia. Neurology. 2004;63(8):1423–6. https://doi.org/10.1212/01.wnl.0000142035.26034.c2
  4. McInerney-Leo AM, Harris JE, Leo PJ, Marshall MS, Gardiner B, Kinning E, Leong HY, McKenzie F, Ong WP, Vodopiutz J, Wicking C, Brown MA, Zankl A, Duncan EL. Whole exome sequencing is an efficient, sensitive and specific method for determining the genetic cause of short-rib thoracic dystrophies. Clinical Genetics. 2015;88(6):550–7. https://doi.org/10.1111/cge.12550
  5. Kremláček J. Event related potentials: principles and practice. IUPESM 2018, Educational Session.
  6. Rusz J, Tykalová T, Fečíková A, Šťastná D, Urgošík D, Jech R. Dualistic effect of pallidal deep brain stimulation on motor speech disorders in dystonia. Brain Stimulation. 2018;11(4): 896–903. https://doi.org/10.1016/j.brs.2018.03.007
  7. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJ, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DB, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ. Near-infrared deep brain stimulation via upconver-sion nanoparticle–mediated optogenetics. Science. 2018; 359(6376):679–84. https://doi.org/10.1126/science.aaq1144
  8. Weckstrom M. Intracellular recording. Scholarpedia. 2010;5(8): 2224. https://doi.org/10.4249/scholarpedia.2224
  9. Kumar J, Kumar J, Murali S, Bhakthavatchalu R. Design and implementation of Izhikevich, Hodgkin and Huxley spiking neuron models and their comparison. In 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT). IEEE. https://doi.org/10.1109/icaccct.2016.7831611
  10. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience. 2012;13(6):407–20. https://doi.org/10.1038/nrn3241
  11. Ness TV, Chintaluri C, Potworowski J, Łęski S, Głąbska H, Wójcik DK, Einevoll GT. Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs). Neuroinformatics. 2015;13(4):403–26. https://doi.org/10.1007/s12021-015-9265-6
  12. Dipalo M, Amin H, Lovato L, Moia F, Caprettini V, Messina GC, Tantussi F, Berdondini L, De Angelis F. Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes. Nano Letters. 2017;17(6):3932–9. https://doi.org/10.1021/acs.nanolett.7b01523
  13. Obeid I. Comparison of Spike Detectors based on Simultaneous Intracellular and Extracellular Recordings. In 2007 3rd Inter-national IEEE/EMBS Conference on Neural Engineering. IEEE. https://doi.org/10.1109/cne.2007.369696
  14. Mamlouk AM, Sharp H, Menne KM, Hofmann UG, Martinetz T. Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations. Neurocomputing. 2005;65–6. https://doi.org/10.1016/j.neucom.2004.10.019
  15. Wild J, Prekopcsak Z, Sieger T, Novak D, Jech R. Performance comparison of extracellular spike sorting algorithms for single-channel recordings. Journal of Neuroscience Methods. 2012; 203(2):369–76. https://doi.org/10.1016/j.jneumeth.2011.10.013
  16. Bakstein E. Deep Brain Recordings in Parkinson's Disease: Processing, Analysis and Fusion with Anatomical Models [dissertation]. Czech Technical University in Prague; 2016.
  17. Bestel R, Daus AW, Thielemann C. A novel automated spike sorting algorithm with adaptable feature extraction. Journal of Neuroscience Methods. 2012;211(1):168–78. https://doi.org/10.1016/j.jneumeth.2012.08.015
  18. Yang K, Wu H, Zeng Y. A Simple Deep Learning Method for Neuronal Spike Sorting. Journal of Physics: Conference Series. 910(1):12062. https://doi.org/10.1088/1742-6596/910/1/012062
  19. Ehrlich T. Single Neuron Studies of the Human Brain: Probing Cognition. Journal of Neuropathology & Experimental Neurology. https://doi.org/10.1097/nen.0000000000000242
  20. Quiroga R. Spike sorting. Scholarpedia. 2007;2(12):3583. https://doi.org/10.4249/scholarpedia.3583
  21. Lopes MV, Aguiar E, Santana E, Santana E, Barros AK. ICA feature extraction for spike sorting of single-channel records. In 2013 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC). IEEE. https://doi.org/10.1109/brc.2013.6487468
  22. Dimitriadis G, Neto J, Kampff A. T-SNE visualization of large-scale neural recordings. Neural Comput. 2018;30(7):1750–1774. https://doi.org/ 10.1162/neco_a_01097
  23. Lourens MA, Meijer HG, Contarino MF, van den Munckhof P, Schuurman PR, van Gils SA, Bour LJ. Functional neuronal activity and connectivity within the subthalamic nucleus in Parkinson’s disease. Clinical Neurophysiology. 2013;124(5): 967–81. https://doi.org/10.1016/j.clinph.2012.10.018
  24. Spike Sorting Software [online]. [cit. 2018-08-20]. http://simonster.github.io/SpikeSortingSoftware/
  25. Mclust Spike Sorting [online]. [cit. 2018-08-20]. http://redishlab.neuroscience.umn.edu/MClust/MClust.html
  26. KlustaKwik Spike Sorting [online]. [cit. 2018-08-20]. https://sourceforge.net/projects/klustakwik/
  27. OSort Spike Sorting [online]. [cit. 2018-08-20]. http://www.urut.ch/new/serendipity/index.php?/pages/osort.html
  28. WaveClus Spike Sorting [online]. [cit. 2018-08-20]. https://github.com/csn-le/wave_clus
  29. Kramer MA. Case Studies in Neural Data Analysis: A Guide for the Practicing Neuroscientist. Computational Neuroscience Series, 2016, The MIT Press. ISBN: 978-0262529372
  30. Tezuka T. Multineuron spike train analysis with R-convolution linear combination kernel. Neural Networks. 2018;102:67–77. https://doi.org/10.1016/j.neunet.2018.02.013
  31. Zhou P, Burton SD, Snyder AC, Smith MA, Urban NN, Kass RE. Establishing a Statistical Link between Network Oscillations and Neural Synchrony. PLOS Computational Biology. 2015;11(10): e1004549. https://doi.org/10.1371/journal.pcbi.1004549
  32. Hohlefeld FU, Huchzermeyer C, Huebl J, Schneider GH, Nolte G, Brücke C, Nikulin V. Functional and effective connectivity in subthalamic local field potential recordings of patients with Parkinson’s disease. Neuroscience. 2013;250:320–32. https://doi.org/10.1016/j.neuroscience.2013.07.028
  33. Horn A, Neumann WJ, Degen K, Schneider GH, Kühn AA. Toward an electrophysiological “sweet spot” for deep brain stimulation in the subthalamic nucleus. Human Brain Mapping. 2017. https://doi.org/10.1002/hbm.23594
  34. Vosmik J. Analysis of Parallel Microelectrode Recordings [master's thesis]. Czech Technical University in Prague; 2018.
Štítky
Biomedicína
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#