#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Souvislost polymorfizmu IL-8 -251T>A a IL-18 -607C>A s náchylností ke karcinomu prsu – metaanalýza


Autoři: M. Farbod 1;  S. A. Dastgheib 2;  F. Asadian 3;  M. Karimi-Zarchi 4,5;  S. Sayad 6;  M. Barahman 7;  S. Kargar 8;  M.- Mazaheri 9 11;  H. Neamatzadeh 9,10
Působiště autorů: Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran 1;  Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 2;  Department of Medical Laboratory Sciences, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran 3;  Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran 4;  Endometriosis Research Center, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran 5;  Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran 6;  Firoozgar Clinical Research Development Center (FCRDC), Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran 7;  Department of Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 8;  Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 9;  Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 10;  Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 11
Vyšlo v časopise: Klin Onkol 2022; 35(3): 181-189
Kategorie: Přehled
doi: https://doi.org/10.48095/ccko2022181

Souhrn

Východiska: Dříve provedené studie hodnotily souvislost polymorfizmu IL-8 -251T>A a IL-18 -607C>A s rizikem karcinomu prsu v různých populacích, ale výsledky zůstávají nekonzistentní a neprůkazné. Provedli jsme tedy tuto metaanalýzu s cílem prozkoumat souvislosti. Metody: Komplexní vyhledávání literatury v databázích PubMed, EMBASE, Web of Science, Scopus, SciELO, SID, and CNKI z hlediska všech vhodných studií publikovaných do 1. října 2020. Pro hodnocení intenzity souvislosti byly použity souhrnné poměry šancí (odds ratio –⁠ OR) s 95% intervaly spolehlivosti (confidence interval –⁠ CI). Výsledky: Bylo vybráno celkem 12 studií případů a kontrol o polymorfizmu IL-8 -251T>A vč. 7 studií s 2 370 případy a 2 314 kontrolami a 5 studií o polymorfizmu IL-18 -607C>A s 900 případy a 882 kontrolami. Souhrnná data ukázala, že polymorfizmy IL-8 -251T>A (AT vs. TT: OR = 1,187; 95% CI 1,038–1,356; p = 0,012) a IL-18 -607C>A (A vs. T: OR = 1,205; 95% CI 1,055–1,377; p = 0,006; AA vs. TT: OR = 1,379; 95% CI 1,056–1,802; p = 0,018; a AA vs. AT+TT: OR = 1,329; 95% CI 1,053–1,678; p = 0,017) měly obecně souvislost se zvýšeným rizikem karcinomu prsu. Navíc když byly studie stratifikovány podle etnik, u IL-8 -251T>A byla významná souvislost s rizikem karcinomu prsu u Afričanek. Testy publikačního zkreslení u metaanalýzy žádné publikační zkreslení neprokázaly. Závěr: Tato metaanalýza odhalila, že polymorfizmus IL-8 -251T>A a IL-18 -607C>A je spojen s náchylností ke karcinomu prsu. Pro lepší vyhodnocení těchto asociací je ovšem třeba dalších multicentrických studií s různými etniky.

Klíčová slova:

karcinom prsu – metaanalýza – interleukin 8 – interleukin 18 – souvislost


Zdroje

1. Elobaid YE, Aw TC, Grivna M et al. Breast cancer screening awareness, knowledge, and practice among Arab women in the United Arab Emirates: a cross-sectional survey. PLoS ONE 2014; 9 (9): e105783. doi: 10.1371/journal.pone.0105783.

2. Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press) 2019; 11 : 151–164. doi: 10.2147/BCTT.S176070.

3. O’Donovan J, Newcomb A, Macrae MC et al. Community health workers and early detection of breast cancer in low-income and middle-income countries: a systematic scoping review of the literature. BMJ Global Health 2020; 5 (5): e002466. doi: 10.1136/bmjgh-2020-002466.

4. Yan C, Sun C, Ding X et al. Association of CAV1 polymorphisms with the risks of breast cancer: a systematic review and meta-analysis. Pathol Res Pract 2019; 215 (9): 152518. doi: 10.1016/j.prp.2019.152518.

5. Jin T-F, Zhang W-T, Zhou Z-F. The 6q25.1 rs2046210 poly­morphism is associated with an elevated susceptibility to breast cancer: a meta-analysis of 261,703 subjects. Mol Gen Genomic Med 2019; 7 (3): e553. doi: 10.1002/mgg3.553.

6. Yoo KY, Tajima K, Park SK et al. Postmenopausal obesity as a breast cancer risk factor according to estrogen and progesterone receptor status (Japan). Cancer Lett 2001; 167 (1): 57–63. doi: 10.1016/s0304-3835 (01) 00463-3.

7. Weiderpass E, Meo M, Vainio H. Risk factors for breast cancer, including occupational exposures. Saf Health Work 2011; 2 (1): 1–8. doi: 10.5491/SHAW.2011.2.1.1.

8. Feng Y, Spezia M, Huang S et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5 (2): 77–106. doi: 10.1016/j.gendis.2018.05.001.

9. DeSantis C, Ma J, Bryan L et al. Breast cancer statistics, 2013. CA Cancer J Clin 2014; 64 (1): 52–62. doi: 10.3322/caac.21203.

10. Anders CK, Johnson R, Litton J et al. Breast cancer before age 40 years. Semin Oncol 2009; 36 : 237–249. doi: 10.1053/j.seminoncol.2009.03.001.

11. Golemis EA, Scheet P, Beck TN et al. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018; 32 (13–14): 868–902. doi: 10.1101/gad.314849.118.

12. Fares J, Fares MY, Khachfe HH et al. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5 (1): 28. doi: 10.1038/s41392-020-0134-x.

13. Ge J, Liu H, Qian D et al. Genetic variants of genes in the NER pathway associated with risk of breast cancer: a large-scale analysis of 14 published GWAS datasets in the DRIVE study. Int J Cancer 2019; 145 (5): 1270–1279. doi: 10.1002/ijc.32371.

14. Han H, Guo W, Shi W et al. Hypertension and breast cancer risk: a systematic review and meta-analysis. Sci Rep 2017; 7 : 44877. doi: 10.1038/srep44877.

15. Wang Z, Liu Y, Yang L et al. The polymorphism interleukin-8 -251A/T is associated with a significantly increased risk of cancers from a meta-analysis. Tumour Biol 2014; 35 (7): 7115–7123. doi: 10.1007/s13277-014-1881-5.

16. Huang Q, Wang C, Qiu LJ et al. IL-8-251A>T polymorphism is associated with breast cancer risk: a meta-analysis. J Cancer Res Clin Oncol 2011; 137 (7): 1147–1150. doi: 10.1007/s00432-011-0981-5.

17. Liu Q, Li A, Tian Y et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 2016; 31 : 61–71. doi: 10.1016/j.cytogfr.2016.08.002.

18. Sheikhpour R. The role of interleukin-8 and its mechanism in patients with breast cancer: its relation with oxidative stress and estrogen receptor. Int J Cancer Man 2017; 10. doi: 10.5812/ijcm.8791.

19. Todorović-Raković N, Milovanović J. Interleukin-8 in breast cancer progression. J Interferon Cytokine Res 2013; 33 (10): 563–570. doi: 10.1089/jir.2013.0023.

20. Freund A, Chauveau C, Brouillet JP et al. IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 2003; 22 (2): 256–265. doi: 10.1038/sj.onc.1206113.

21. Singh JK, Simões BM, Clarke RB et al. Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opin Ther Targets 2013; 17 (11): 1235–1241. doi: 10.1517/14728222.2013.835398.

22. Nicolini A, Carpi A, Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev 2006; 17 (5): 325–337. doi: 10.1016/j.cytogfr.2006.07.002.

23. Smith KC, Bateman AC, Fussell HM et al. Cytokine gene polymorphisms and breast cancer susceptibility and prognosis. Eur J Immunogenet 2004; 31 (4): 167–173. doi: 10.1111/j.1365-2370.2004.00462.x.

24. Snoussi K, Mahfoudh W, Bouaouina N et al. Genetic variation in IL-8 associated with increased risk and poor prognosis of breast carcinoma. Hum Immunol 2006; 67 (1–2): 13–21. doi: 10.1016/j.humimm.2006.03. 018.

25. Vogel U, Christensen J, Dybdahl M et al. Prospective study of interaction between alcohol, NSAID use and polymorphisms in genes involved in the inflammatory response in relation to risk of colorectal cancer. Mutat Res 2007; 624 (1–2): 88–100. doi: 10.1016/j.mrfmmm.2007.04.006.

26. Kamali-Sarvestani E, Aliparasti MR, Atefi S. Association of interleukin-8 (IL-8 or CXCL8) -251T/A and CXCR2 +1208C/T gene polymorphisms with breast cancer. Neoplasma 2007; 54 (6): 484–489.

27. Snoussi K, Mahfoudh W, Bouaouina N et al. Combined effects of IL-8 and CXCR2 gene polymorphisms on breast cancer susceptibility and aggressiveness. BMC Cancer 2010; 10 : 283. doi: 10.1186/1471-2407-10-283.

28. Liu S, Cai H, Cheng W et al. Association of VDR polymorphisms (Taq I and Bsm I) with prostate cancer: a new meta-analysis. J Int Med Res 2017; 45 (1): 3–10. doi: 10.1177/0300060516668939.

29. Wang Z, Liu Q-L, Sun W et al. Genetic polymorphisms in inflammatory response genes and their associations with breast cancer risk. Croat Med J 2014; 55 (6): 638–646. doi: 10.3325/cmj.2014.55.638.

30. Khalili-Azad T, Razmkhah M, Ghiam AF et al. Association of interleukin-18 gene promoter polymorphisms with breast cancer. Neoplasma 2009; 56 (1): 22–25. doi: 10.4149/neo_2009_01_22.

31. Taheri M, Hashemi M, Eskandari-Nasab E et al. Association of -607 C/A polymorphism of IL-18 gene (rs1946518) with breast cancer risk in Zahedan, Southeast Iran. Prague Med Rep 2012; 113 (3): 217–222. doi: 10.14712/23362936.2015.19.

32. Back LK d C, Farias TDJ, da Cunha PA et al. Functional polymorphisms of interleukin-18 gene and risk of breast cancer in a Brazilian population. Tissue Antigens 2014; 84 (2): 229–233. doi: 10.1111/tan.12367.

33. Zhao Y, Wang S, Zhang Z et al. Association of IL-18 genetic polymorphisms and haplotypes with breast cancer risk in a Chinese population. Biomed Res 2017; 28 : 8433–8437. doi: 10.1371/journal.pone.0073671.

34. Qiao X, Xu D, Sun D et al. Association analysis of interleukin-18 gene promoter region polymorphisms and susceptibility to sporadic breast cancer in Chinese Han women. J Clin Lab Anal 2018; 32 (9): e22591. doi: 10.1002/jcla.22591.

35. Todorović-Raković N, Milovanović J. Interleukin-8 in breast cancer progression. J Interferon Cytokine Res 2013; 33 : 563–570. doi: 10.1089/jir.2013.0023.

36. El Ayadi A, Herndon DN, Finnerty CC. Biomarkers in burn patient care. Total burn care (fifth ed.). Elsevier Inc. 2018; 232–235.e2.

37. Charrad R, Kaabachi W, Rafrafi A et al. IL-8 gene variants and expression in childhood asthma. Lung 2017; 195 (6): 749–757. doi: 10.1007/s00408-017-0058-6.

38. Zhang M, Fang T, Wang K et al. Association of polymorphisms in interleukin-8 gene with cancer risk: a meta-analysis of 22 case–control studies. Onco Targets Ther 2016; 9 : 3727–3737. doi: 10.2147/OTT.S103159.

39. Salimi E, Karimi-Zarchi M, Dastgheib SA et al. Association of promoter region polymorphisms of IL-6 and IL-18 genes with risk of recurrent pregnancy loss: a systematic review and meta-analysis. Fetal Pediatr Pathol 2019; 39 (4): 346–359. doi: 10.1080/15513815.2019.1652379.

40. Rex DAB, Agarwal N, Prasad TSK et al. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal 2020; 14 (2): 257–266. doi: 10.1007/s12079-019-00544-4.

41. Zhang M-J, Zhou Y, Wang X et al. Interleukin-18 gene promoter 607A polymorphism, but not 137C polymorphism, is a protective factor for ischemic stroke in the Chinese population: a meta-analysis. Meta Gene 2016; 9 : 165–172. doi: 10.1016/j.mgene.2016.06.006.

42. Yin YW, Hu AM, Sun QQ et al. Association between interleukin-8 gene -251 T/A polymorphism and the risk of peptic ulcer disease: a meta-analysis. Hum Immunol 2013; 74 (1): 125–130. doi: 10.1016/j.humimm.2012.09.006.

43. Li X, Ren D, Li Y et al. Increased cancer risk associated with the -607C/A polymorphism in interleukin-18 gene promoter: an updated meta-analysis including 12,502 subjects. J BUON 2015; 20 (3): 902–917.

44. Bahrami R, Dastgheib SA, Niktabar SM et al. Association of BMP4 rs17563 polymorphism with nonsyndromic cleft lip with or without cleft palate risk: literature review and comprehensive meta-analysis. Fetal Pediatr Pathol 2020; 40 (4): 305–319. doi: 10.1080/15513815.2019.1707916.

45. Veisian M, Tabatabaei RS, Javaheri A et al. Association of interleukin-10 -1082G > a polymorphism with susceptibility to preeclampsia: a systematic review and meta--analysis based on 21 studies. Fetal Pediatr Pathol 2020; 39 (6): 518–532. doi: 10.1080/15513815.2019.1683919.

46. Abbasi H, Dastgheib SA, Hadadan A et al. Association of endothelial nitric oxide synthase 894G > T polymorphism with preeclampsia risk: a systematic review and meta--analysis based on 35 studies. Fetal Pediatr Pathol 2021; 40 (5): 455–470. doi: 10.1080/15513815.2019.1710880.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 3

2022 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

BONE ACADEMY 2025
nový kurz
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D, doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Hypertrofická kardiomyopatie: Moderní přístupy v diagnostice a léčbě
Autoři: doc. MUDr. David Zemánek, Ph.D., MUDr. Anna Chaloupka, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#