Acute rotavirus infection causes significant activation of the IL-33/IL-13 axis
Autoři:
I. Paulauskaitė 1; R. Orentaitė 2
Působiště autorů:
Centre for Innovative Medicine, Lithuania
1; Children‘s Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos, Lithuania
2
Vyšlo v časopise:
Epidemiol. Mikrobiol. Imunol. 72, 2023, č. 1, s. 19-24
Kategorie:
Původní práce
Souhrn
Aim: Overactivation of the IL-33/IL-13 axis is the main step in initializing allergic inflammation and promoting allergic diseases. Data on viral pathogens as risk factors for subsequent allergic disease are contradictory. The strongest associations have been made between upper respiratory tract virus infections and asthma. Intestinal viral infections also activate IL-33 and IL-13 as part of the innate antiviral response. The aim of this study was to test whether there are differences in IL-13 and IL-33 concentrations in pediatric patients with acute rotavirus- and norovirus infections and healthy controls.
Material and Methods: Forty children with acute rotavirus, 27 with acute norovirus intestinal infections and 17 control children were enrolled in this study. Blood IL-33 and IL-13 detection was performed with enzyme-linked immunosorbent assays (ELISAs).
Results: Acute rotavirus infection caused a significant elevation in IL-33 and IL-13 compared to acute norovirus infection (63.85 pg/ml vs. 0, P = 0.0026, and 94.24 pg/ml vs. 0.88 pg/ml, P = 0.0003, respectively) and healthy controls (63.85 pg/ml vs. 9.89 pg/ ml, P = 0.0018, and 94.24 pg/ml vs. 0.14 pg/ml, P < 0.0001, respectively). There was no significant difference in IL-33 and IL-13 concentrations between the acute norovirus group and healthy controls (0 vs. 9.89 pg/ml, P = 0.8276 and 0.88 pg/ml vs. 0.14 pg/ml, P = 0.1652, respectively).
Conclusion: Acute rotavirus infection causes a significant elevation in IL-33 and IL-13, compared to norovirus and healthy control children.
Zdroje
1. Peng W, Novak N. Pathogenesis of atopic dermatitis. Clin Exp Allergy, 2015 Mar;45(3):566–564. Available at: https://doi. org/10.1111/cea.12495.
2. Cheung DS, Grayson MH. Role of Viruses in the Development of Atopic Disease in Pediatric Patients. Curr Allergy Asthma Rep, 2012;12(6):613–620. Available at: https://doi.org/10.1007/ s11882-012-0295-y.
3 Busse WW, Lemanske RF, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet, 2010 Sep;376(9743):826-34. https://doi.org/10.1016/S0140- 6736(10)61380-3.
4. Pan HH, Lue KH, Sun, HL, et al. Gastroenteritis during infancy is a novel risk factor for allergic disease. Medicine (Baltimore), 2019;98(35):1–7. Available at: https://doi.org/10.1097/ MD.0000000000016540.
5. Thomson JA, Widjaja C, Darmaputra AAP, et al. Early childhood infections and immunisation and the development of allergic disease in particular asthma in a high‐risk cohort: A prospective study of allergy‐prone children from birth to six years. Pediatr. Allergy Immunol, 2010;21(7):1076–1085. Available at: https:// doi.org/10.1111/j.1399-3038.2010.01018.x.
6. Reimerink J, Stelma F, Brouwer D, et al. Early‐life rotavirus and norovirus infections in relation to development of atopic manifestation in infants. Clin Exp Allergy, 2009;39(2):254–260. Available at: https://doi.org/10.1111/j.1365-2222.2008.03128.x.
7. Saravia E, You D, Shrestha B, et al. Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33. Plos Pathog, 2015;11(10):1–17. Available at: https://doi.org/10.1371/journal. ppat.1005217.
8. Donovan C, Brouke JE, Vlahos R. Targeting the IL-33/IL-13 Axis for Respiratory Viral Infections. Trends Pharmacol Sci, 2016;37(4):252–261. Available at: https://doi.org/10.1016/j. tips.2016.01.004.
9. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol, 2016;16(11):676–689. Available at: https://doi.org/10.1038/nri.2016.95.
10. Cayrol C, Girard JP. IL-33: An alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol, 2014;31:31–37. Available at: https://doi.org/10.1016/j. coi.2014.09.004.
11. Goffic RL, Arshad MI, Raunch M, et al. Infection with influenza virus induces IL-33 in murine lungs. Am J Respir Cell Mol Biol, 2011;45(6):1152–1232. Available at: https://doi.org/10.1165/ rcmb.2010-0516OC.
12. Seyfizadeh N, Seyfizadeh N, Gharibi T, et al. Interleukin-13 as an important cytokine: A review on its roles in some human diseases. Acta Microbiol Immunol Hung, 2015;62(4):341–378. Available at: https://doi.org/10.1556/030.62.2015.4.2.
13. Marone G, Granata F, Pucino V, et al. The Intriguing Role of Interleukin 13 in the Pathophysiology of Asthma. Front Farmacol, 2019;10(1387):1–13. Available at: https://doi.org/10.3389/ fphar.2019.01387.
14. Paul WE, Zhu J. How are TH2-type immune responses initiated and amplified? Nat Rev Immunol, 2010;10(4):225–235. Available at: https:/doi.org/10.1038/nri2735.
15. Yang SJ, Allahverdian S, Saunders ADR, et al. IL-13 signaling through IL-13 receptor α2 mediates airway epithelial wound repair. FASEB, 2019;33(3):3746–3757. Available at: https://doi. org/10.1096/fj.201801285R.
16. McDermott JR, Humphreys NE, Forman SP, et al. Intraepithelial NK cell-derived IL-13 induces intestinal pathology associated with nematode infection. J Immunol, 2005;175(3):3207–3213. Available at: https://doi.org/10.4049/jimmunol.175.5.3207.
17. Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy, 2020;75(1):54–62. Available at: https://doi.org/10.1111/all.13954.
18. Zhu Z, Oh MH, Yu J, et al. The Role of TSLP in IL-13-Induced Atopic March. Sci Rep, 2011;23:1–11. Available at: https://doi. org/10.1038/srep00023.
19. Xu J, Guardado J, Hoffman R, et al. IL33-mediated ILC2 activation and neutrophil IL5 production in the lung response after severe trauma: A reverse translation study from a human cohort to a mouse trauma model. PLoS Med, 2017;14(7):1–27. Available at: https://doi.org/10.1371/journal.pmed.1002365.
20. Weatherhead JE, Porter P, Coffey A, et al. Ascaris Larval Infection and Lung Invasion Directly Induce Severe Allergic Airway Disease in Mice. Infect Immun, 2018;86(12):1–12. Available at: https://doi.org/10.1128/IAI.00533-18.
21. Lukacz NW, Moore ML, Rudd BD, et al. Differential Immune Responses and Pulmonary Pathophysiology Are Induced by Two Different Strains of Respiratory Syncytial Virus. Am J Pathol, 2006;169(3):977–986. Available at: https://doi.org/10.2353/ajpath. 2006.051055.
22. Dalessandri T, Crawford G, Hayes M, et al. IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat Commun, 2016;7:1–12. Available at: https://doi.org/10.1038/ncomms12080.
23. Resende SD, Magalhaes FC, Rodriguez-Oliveira JL, et al. Modulation of Allergic Reactivity in Humans is Dependent on Shistosoma mansoni parasite burden. Low levels of IL-33 or TNF-a and high levels of IL-10 in Serum. Front Immunol, 2019;9:1–14. Available at: https://doi.org/10.3389/fimmu.2018.03158.
24. Thavagnanam S, Parker JC, Mcbrien ME, et al. Effects of IL-13 on Mucociliary Differentiation of Pediatric Asthmatic Bronchial Epithelial Cells. Pediatr Res, 2011;69:95–100.
25. Fulkerson PC, Fishetti CA, Hassman LM, et al. Persistent Effects Induced by IL-13 in the Lung. Am J Respir Cell Mol Biol, 2006;35(3):337–346. Available at: https://doi.org/10.1165/ rcmb.2005-0474OC.
26. Crawford SE, Ramani S, Tate JE, et al. Rotavirus infection, Nat Rev Dis Primers, 2017;3:1–29. Available at: https://doi.org/10.1038/ nrdp.2017.83.
27. Karst SM, Wobus CE. A Working Model of How Noroviruses Infect the Intestine. PLoS Pathog, 2015;11(2):1–7. Available at: https://doi.org/10.1371/journal.ppat.1004626.
28. Chen SY, Tsai CN, Lee YS, et al. Intestinal microbiome in children with severe and complicated acute viral gastroenteritis, Sci Rep, 2017;7:1–6. Available at: https://doi.org/10.1038/srep46130.
29. Chen SY, Tsai CN, Lai MW, et al. Norovirus Infection as a Cause of Diarrhea-Associated Benign Infantile Seizures. Clin Infect Dis, 2009:48(7):849–855. Available at: https://doi. org/10.1086/597256.
30. Basic M, Keubler LM, Buettner M, et al. Norovirus Triggered Microbiota- driven Mucosal Inflammation in Interleukin 10-deficient Mice. Inflamm Bowel Dis, 2014;20(3):431–434. Available at: https://doi.org/10.1097/01.MIB.0000441346.86827.ed.
31. Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: The good, the bad, and the inflammatory. Cytokine, 2017;100:1– 10. Available at: https://doi.org/10.1016/j.cyto.2017.06.017.
32. Enlady HG, Sherif LS, Saleh MT, et al. Prediction of Gut Wall Integrity Loss in Viral Gastroenteritis by Non-Invasive Marker. Open Access Maced J Med Sci, 2015;3(1):37–45. Available at: https:// doi.org/10.3889/oamjms.2015.023.
33. Halat G, Haider T, Dedeyan M, et al. IL-33 and its increased serum levels as an alarmin for imminent pulmonary complications in polytraumatized patients. World J Emerg Surg, 2019;14(36):1–7. Available at: https://doi.org/10.1186/s13017-019-0256-z.
34. Duan L, Chen J, Zhang H, et al. Interleukin-33 Ameliorates Experimental Colitis through Promoting Th2/Foxp3+ Regulatory T-Cell Responses in Mice. Mol Med, 2012;18:753–761. Available at: https://doi.org/10.2119/molmed.2011.00428.
35. Cheon IS, Son YM, Jiang L, et al. Neonatal hyperoxia promotes asthma-like features through IL-33–dependent ILC2 responses. J Allergy Clin Immunol, 2018;142(4):1100–1112. Available at: https://doi.org.10.1016/j.jaci.2017.11.025.
36. Bamias G, Cominelli F. Role of Th2 immunity in intestinal inflammation. Curr Opin Gastroenterol, 2015;31(6):471–476. Available at: https://doi.org/10.1097/MOG.0000000000000212.
37. Zhu J, Yang F, Sang L, et al. IL-33 aggravates DSS-indused acute colitis in mouse colon lamina proprie by enhancing Th2 cell responses. Mediators Inflam, 2015;(2015):1–12. Available at: https://doi.org/10.1155/2015/913041.
38. Kaur D, Gomez E, Doe C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk. Allergy, 2015;70(5):556–567. Available at: https:// doi.org/10.1111/all.12593.
39. Boshuizen JA, Reimerink JHJ, Korteland-van Male AM, et al. Changes in Small Intestinal Homeostasis, Morphology, and Gene Expression during Rotavirus Infection of Infant Mice. J Virol, 2003;77(24):13005–13016. Available at: https://doi. org/10.1128/jvi.77.24.13005-13016.2003.
40. Parisi V, Cabaro S, D‘Esposito V, et al. Epicadial Adipose Tissue and IL-13 Response to Myocardial Injury Drives Left Ventricular Remodeling After ST Elevation Myocardial Infarctial. Front Physiol, 2020;11:1–8. Available at: https://doi.org/10.3389/ fphys.2020.575181.
41. Vorobjova T, Tagoma A, Oras A, et al. Celiac Disease in Children, Particularly with Accompanying Type 1 Diabetes, Is Characterized by Substantial Changes in the Blood Cytokine Balance, Which May Reflect Inflammatory Processes in the Small Intestinal Mucosa. J Immunol Res, 2019:1–17. Available at: https://doi. org/10.1155%2F2019%2F6179243.
42. Dixon H, Blanchard C, deSchoolmeester ML, et al. The role of Th2 cytokines, chemokines and parasite products in eosinophil recruitment to the gastroitestinal mucosa during helminth infection. Eur J Immunol, 2006;36(7):1753–1763. Available at: https:// doi.org/10.1002/eji.200535492.
43. Pearson JA, Tai N, Ekanayake-Alper DK, et al. Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions. Front Immunol, 2019;10(2654):1–15. Available at: https://doi.org/10.3389/fimmu. 2019.02654.
44. Parra M, Herrera D, Jacome MF, et al. Circulating rotavirus- specific T cells have a poor functional profile. J Virol, 2014;468(470):340–350. Available at: https://doi.org/10.1016/j. virol.2014.08.020.
45. Jaimes MC, Rojas OL, Gonzalez AM, et al. Frequencies of Virus- Specific CD4+ and CD8+ T Lymphocytes Secreting Gamma Interferon after Acute Natural Rotavirus Infection in Children and Adults. Virology, 2002;76(10):4741–4749. Available at: https://doi.org/10.1128/jvi.76.10.4741-4749.2002.
46. Rojas OL, Gonzalez AM, Gonzales R, et al. Human rotavirus specific T cells: quantification by ELISPOT andexpression of homing receptors on CD4+T cells. Virology, 2003;314(2):671–679. Available at: https://doi.org/10.1016/s0042-6822(03)00507-5.
47. Kawashima R, Kawamura YI, Kato R, et al. IL-13 Receptor a2 Promotes Epithelial Cell Regeneration From Radiation–Induced Small Intestinal Injury in Mice. Gastroenterology, 2006;131(1):130–141. Available at: https://doi.org/10.1053/j. gastro.2006.04.022.
48. Huang SW, Lee YP, Hung CH, et al. Exogenous interleukin-6, interleukin- 13, and interferon-gamma provoke pulmonary abnormality with mild edema in enterovirus 71-infected mice. Respir Res, 2011;12(1):1–9. Available at: https://doi.org/10.1186/1465- 9921-12-147.
49. Schneider D, Hong JY, Popova AP, et al. Neonatal rhinovirus infection induces mucous metaplasia and airways hyperresponsiveness. J Immunol, 2012;188(6):2894–2904. Available at: https://doi.org/10.4049/jimmunol.1101391.
50. Hong JY, Bentley JK, Chung Y, et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J Allergy Clin Immunol, 2014;134(2):429–439. Available at: https://doi.org/10.1016/j. jaci.2014.04.020.
Štítky
Hygiena a epidemiologie Infekční lékařství MikrobiologieČlánek vyšel v časopise
Epidemiologie, mikrobiologie, imunologie
2023 Číslo 1
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Črevná mikrobiota, jej vzťah k imunitnému systému a možnosti jej modulácie
- Multilokulární infekce způsobené hypervirulentní Klebsiella pneumoniae
- Charakteristika testu ID-NOW™ určeného k rychlé detekci SARS-CoV-2
- Zvláštnosti Q horečky a dosud zaznamenané humánní případy v České republice