#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Current indications of extracorporeal shock wawe litho tripsy urolithiasis treatment - what has been changed?


Authors: MUDr. Aleš Petřík, Ph.D.
Authors‘ workplace: Urologické oddělení Nemocnice České Budějovice, a. s.
Published in: Urol List 2008; 6(3): 14-21

Overview

Extracorporeal shock wave lithotripsy (ESWL) has been used in clinical practice since 1980. Even new lithotripters have been developed, it is not clear, if they can achieve better treatment results or not. Ureteroscopy, due to the progress in its development, has become an equivalent technique to SWL. Contribution of using non contrast spiral CT (NCSCT) as a diagnostic procedure is essential. On NCSCT scan is possible to measure the stone surface distance and NCSCT can estimate the stone composition, which has great influence on treatment results. There are no significant changes in indication of SWL in the treatment of renal stones. The stone diameter of 20 mm and anatomy of lower calyx are still the main limitation factors of indication of SWL treatment. Ureteroscopy has become the equivalent technique to ESWL in ureteric stone treatment. Using of analgesia and minimal invasivity are the main advantages of SWL. Return to basic research of shock waves physic and development of new lithotripters are essential, if SWL wants to play a significant role in urinary stone treatment.

Key words:
ureteric stone, therapy, SWL, ureteroscopy


Sources

1. Chaussy C, Brendel W, Schmiedt E. Extra­cor­po­really induced destruction of kidney stones by shock waves. Lancet 1980; 8207: 1265–1268.

2. Eisenmenger W. The Mechanism of Stone Frag­mentation in ESWL. Ultrasound Med Biol 2001; 27: 583–693.

3. Hochreiter WW, Danuser H, Perrig M, Studer UE. Extracorporeal shock wave lithotripsy for distal urete­ral calculi: what a powerful machine can achieve. J Urol 2003; 169: 878–880.

4. Nomikos MS, Sowter SJ, Tolley DA. Outcomes using a fourth-generation lithotripter: a new benchmark for comparison? BJU Int 2007; 100: 1356–1360.

5. Portis AJ, Yan Y, Pattaras JG et al. Matched pair analysis of shock wave lithotripsy effectiveness for comparison of lithotriptors. J Urol 2003; 169: 58–62.

6. Eisenmenger W, Du XX, Tang C et al. The first clinical results of „wide-focus and low-pressure“ ESWL. Ultrasound Med Biol 2002; 28: 769–774.

7. Evan AP, McAteer JA, Connors BA et al. Inde­pen­dent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int 2008; 101: 382–388.

8. Mishriki SF, Cohen NP, Baker AC et al. Choosing a powerful lithotriptor. Br J Urol 1993; 71: 653–660.

9. Tolley DA. Consensus on lithotriptor terminology. World J Urol 1993; 11: 37–42.

10. Tolley DA, Wallace DM, Tiptaft RC. First UK consensus conference on lithotriptor terminology – 1989. Br J Urol 1991; 67: 9–12.

11. Denstedt JD, Clayman RV, Preminger GM. Efficacy quotient as a means of comparing lithotripters. J Endourol 1990; 3: 100.

12. Preminger GM, Clayman R. The changing face of lithotripsy: impact of second generation machines. In: Proceedings of the 7th World Congress on Endo­urology and ESWL, Kyoto, Japan, 1989: 187.

13. Clayman RV, McClennan B, Garvin TD et al. Litho­star, an electromagnetic acoustic shock wave unit for extracorporeal lithotripsy. J Endourol 1989; 3: 307.

14. Rassweiler J, Köhrmann K, Jünemann KP, Alken P. Use of electromagnetic technology. In: Smith AD. Controversies in endourology. Philadephia: W. B. Saunders 1995: 95–106.

15. Holm-Nielsen A, Jorgensen T, Mogensen P, Fogh J. The prognostic value of probe renography in ureteric stone obstruction. Br J Urol 1981; 53: 504–507.

16. McCullough DL. Extracorporeal Shock Wave Litho­tripsy. In: Walsh PC et al (eds). Campbell's Urology. Philadephia: W. B. Saunders 1992: 2157–2182.

17. D'Addessi A, Bongiovanni L, Sasso F et al. Extra­corporeal shock wave lithotripsy in pediatrics. J Endourol 2008; 22: 1–12.

18. Pareek G, Armenakas NA, Panagopoulos G et al. Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urology 2005; 65: 33–36.

19. Akay AF, Gedik A, Tutus A et al. Body mass index, body fat percentage, and the effect of body fat mass on SWL success. Int Urol Nephrol 2007; 39: 727–730.

20. Pareek G, Hedican SP, Lee FT Jr, Nakada SY. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology 2005; 66: 941–944.

21. Robert M, A'Ch S, Lanfrey P et al. Piezoelectric shock wave lithotripsy of urinary calculi: comparative study of stone depth in kidney and ureter treatments. J Endourol 1999; 13: 699–703.

22. Dretler SP. Stone fragility – a new therapeutic distinction. J Urol 1988; 139: 1124–1127.

23. Williams JC, Saw KC, Paterson RF et al. Variability of renal stone fragility in shock wave lithotripsy. Urology 2003; 61: 1092–1096.

24. Ansari MS, Gupta NP, Seth A et al. Stone fragility: its therapeutic implications in shock wave lithotripsy of upper urinary tract stones. Int Urol Nephrol 2003; 35: 387–392.

25. Bhatta KM, Prien EL Jr, Dretler SP. Cystine calculi – rough and smooth: a new clinical distinction. J Urol 1989; 142: 937–940.

26. Pareek G, Armenakas NA, Fracchia JA. Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy. J Urol 2003; 169: 1679–1681.

27. Williams JC Jr, Saw KC, Monga AG et al. Correction of helical CT attenuation values with wide beam collimation: in vitro test with urinary calculi. Acad Radiol 2001; 8: 478–483.

28. Williams JC Jr, Paterson RF, Kopecky KK et al. High resolution detection of internal structure of renal calculi by helical computerized tomography. J Urol 2002; 167: 322–326.

29. Gupta NP, Ansari MS, Kesarvani P et al. Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int 2005; 95: 1285–1288.

30. Wang LJ, Wong YC, Chuang CK et al. Predictions of outcomes of renal stones after extracorporeal shock wave lithotripsy from stone characteristics de­ter­mined by unenhanced helical computed tomography: a multivariate analysis. Eur Radiol 2005; 15: 2238–2243.

31. El-Nahas AR, El-Assmy AM, Mansour O, Sheir KZ. A prospective multivariate analysis of factors predic­ting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution non­contrast computed tomography. Eur Urol 2007; 51: 1688–1693.

32. Kacker R, Zhao L, Macejko A et al. Radiographic parameters on noncontrast computerized tomography predictive of shock wave lithotripsy success. J Urol 2008; 179: 1866–1871.

33. Albala DM, Assimos DG, Clayman RV et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol 2001; 166: 2072–2080.

34. Preminger GM, Assimos DG, Lingeman JE et al. AUA Nephrolithiasis Guideline Panel. Chapter 1: AUA guideline on management of staghorn calculi: dia­gnosis and treatment recommendations. J Urol 2005; 173: 1991–2000.

35. Wen CC, Nakada SY. Treatment selection and outcomes: renal calculi. Urol Clin North Am 2007; 34: 409–419.

36. Sampaio FJ, Aragao AH. Inferior pole collecting system anatomy: its probable role in extracorporeal shock wave lithotripsy. J Urol 1992; 147: 322–324.

37. El Bahnasy AM, Shalhav AL, Hoenig DM et al. Lower caliceal stone clearance after shock wave lithotripsy or ureteroscopy: the impact of lower pole radiographic anatomy. J Urol 1998; 159: 676–682.

38. Albala DM, Assimos DG, Clayman RV et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol 2001; 166: 2072–2080.

39. Gupta NP, Singh DV, Hemal AK, Mandal S. Infundibulopelvic anatomy and clearance of inferior caliceal calculi with shock wave lithotripsy. J Urol 2000; 163: 24–27.

40. Ghoneim IA, Ziada AM, Elkatib SE. Predictive factors of lower calyceal stone clearance after Extracorporeal Shockwave Lithotripsy (ESWL): a focus on the infundibulopelvic anatomy. Eur Urol 2005; 48: 296–302.

41. Pearle MS, Lingeman JE, Leveillee R et al. Pros­pec­tive, randomized trial comparing shock wave litho­tripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol 2005; 173: 2005–2009.

42. User HM, Hua V, Blunt LW et al. Performance and durability of leading flexible ureteroscopes. J Endourol 2004; 18: 735–738.

43. Whitfield HN. The management of ureteric stones. Part II: therapy. BJU Int 1999; 84(8): 916–921.

44. Segura JW, Preminger GM, Assimos DG et al. Ure­te­ral stones clinical guidelines panel summary. Report on the management of ureteral calculi. J Urol 1997; 158: 1915–1921.

45. Chaussy C, Schmiedt E, Jocham D et al. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol 1982; 127: 417–420.

46. Chaussy C, Schmiedt E. Shock wave treatment for stones in the upper urinary tract. Urol Clin North Am 1983; 10: 743–750.

47. Cass AS. Do upper ureteral stones need to be manipulated (push back) into the kidney before extracorporeal shock wave lithotripsy? J Urol 1992; 147: 349–351.

48. Payne SR, Ramsay JW. The effects of double J stents on renal pelvic dynamics in the pig. J Urol 1988; 140: 637–641.

49. Ryan PC, Lennon GM, McLean PA, Fitzpatrick JM. The effects of acute and chronic JJ stent placement on upper urinary tract motility and calculus transit. Br J Urol 1994; 74: 434–439.

50. Ramsay JW, Payne SR, Gosling PT et al. The effects of double J stenting on unobstructed ureters. An experimental and clinical study. Br J Urol 1985; 57: 630–634.

51. Thompson AC, Shamsuddin AB, Mishriki SF et al. In situ ESWL for ureteric stones: the adverse effect of JJ stenting. Br J Urol 1996; 77(suppl 1): 5.

52. Petřík A, Záura F, Beneš J. Vliv stentingu na dezintegraci ureterolitiázy in vitro. čes Urol 2004; 3: 45–48.

53. Petřík A, Alterová E, Fiala M et al. Vliv stentingu na dezintegraci ureterolitiázy in vivo. čes Urol 2006; 1: 59–63.

54. Dellabella M, Milanese G, Muzzonigro G. Efficacy of tamsulosin in the medical management of juxtavesical ureteral stones. J Urol 2003; 170: 2202– 2205.

55. Borghi L, Meschi T, Amato F et al. Nifedipine and methylprednisolone in facilitating ureteral stone passage: A randomized, double-blind, placebo-controlled study. J Urol 1994; 152: 1095–1098.

56. De Sio M, Autorino R, Di Lorenzo G et al. Medical expulsive treatment of distal-ureteral stones using tamsulosin: a single-center experience. J Endourol 2006; 20: 12–16.

57. Kupeli B, Irkilata L, Gurocak S et al. Does tamsulosin enhance lower ureteral stone clearance with or without shock wave lithotripsy? Urology 2004; 64: 1111–1115.

58. Laerum E, Ommundsen OE, Gronseth JE et al. Oral diclofenac in the rophylactic treatment of recurrent renal colic. A double-blind comparison with placebo. Eur Urol 1995; 28: 108–111.

59. Preminger GM, Tiselius HG, Assimos DG et al. 2007 guideline for the management of ureteral calculi. J Urol 2007; 178: 2418–3421.

60. Tiselius HG, Ackermann D, Alken P et al. Working party on lithiasis, European Association of Urology. Guide­lines on urolithiasis. Eur Urol 2001; 40: 362–371.

Labels
Paediatric urologist Urology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#