Assessment of motor skills in children
Authors:
Šnajdrová T.; Králová V.; Šafářová M.; Kobesová A.
Authors‘ workplace:
Klinika rehabilitace a tělovýchovného lékařství 2. LF UK a FN Motol, Praha
Published in:
Rehabil. fyz. Lék., 30, 2023, No. 2, pp. 90-97.
Category:
Review Article
doi:
https://doi.org/10.48095/ccrhfl202390
Overview
Motor skills are part of and a prerequisite of all movements. The development of a child reflects maturation of the central nervous system and the interaction between the maturing organism, environment and a task (bio-psycho-social development). Any motor impairment may have a negative impact on an individual‘s function within activities of daily living, on his or her cognitive behaviour and inclusion in the society. When testing motor skills in children, it must be determined which deviation needs to be actively treated and corrected and which can be classified as a developmental variation that disappears with age independently of therapy. Since a child‘s motor development is continuous and dynamic, paediatric testing methods must be different than those used in adults. Various assessment tools are used to determine the level of motor skills and to identify abnormalities. The purpose of this article is to provide a brief overview and description of the most used motor tests in children of a younger school age. The described assessment tools allow one to decide which child requires therapy and which one only needs specific recommendations or monitoring.
Keywords:
children – assessment – gross motor – fine motor – younger school age
Sources
1. Griffiths A, Toovey R, Morgan PE et al. Psychometric properties of gross motor assessment tools for children: a systematic review. BMJ Open 2018; 8(10): e021734. doi: 10.1136/bmjopen-2018-021734.
2. Lopes L, Santos R, Coelho-E-Silva M et al. A narrative review of motor competence in children and adolescents: what we know and what we need to find out. Int J Environ Res Public Health 2021; 18(1): 18. doi: 10.3390/ijerph18010018.
3. Hadders-Algra M. Early human motor development: from variation to the ability to vary and adapt. Neurosci Biobehav Rev 2018; 90: 411–427. doi: 10.1016/j.neubiorev.2018.05.009.
4. Pin TW, Yiu B, Wong T et al. Development of gross motor evaluation for children aged 18 to 42 months. Dev Neurorehabil 2021; 24(3): 173–179. doi: 10.1080/17518423.2020.1819460.
5. Hirata S, Kita Y, Yasunaga M et al. Applicability of the Movement Assessment Battery for Children – 2nd ed. (MABC-2) for Japanese children aged 3–6 years: a preliminary investigation emphasizing internal consistency and factorial validity. Front Psychol 2018; 9: 1452. doi: 10.3389/fpsyg.2018.01452.
6. Dobrodinská M. Problematika diagnostiky vývojové poruchy motorické funkce u dětí MŠ s ohledem na školní připravenost. Eduport 2018; 1(2): 1–6. doi: 10.21062/ujep/224.2018/a/2533-7106/OJPPE/2/1/1.
7. Kolář P et al. Rehabilitace v klinické praxi. Galén 2009.
8. Moore SA, Faulkner G, Rhodes RE et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: a national survey. Int J Behav Nutr Phys Act 2020; 17(1): 85. doi: 10.1186/s12966-020-00987-8.
9. Montgomery PC, Connolly BH. Norm-referenced and criterion-referenced tests: use in pediatrics and application to task analysis of motor skill. Phys Ther 1987; 67(12): 1873–1876. doi: 10.1093/ptj/67.12.1873.
10. Garn AC, Webster K. Reexamining the factor structure of the test of gross motor development–2nd ed.: application of exploratory structural equation modeling. Meas Phys Educ Exerc Sci 2017; 22(3): 200–212. doi: 10.1080/1091367X.2017.1413373.
11. Lima RA, Bugge A, Pfeiffer KA et al. Tracking of gross motor coordination from childhood into adolescence. Res Q Exerc Sport 2017; 88(1): 52–59. doi: 10.1080/02701367.2016.1264566.
12. Grafomotorika a psaní u žáků s tělesným postižením. [online]. Jemná motorika. Dostupné z: https://is.muni.cz/do/rect/el/estud/pedf/js14/grafomot/web/pages/02-02-motorika.html.
13. Piek JP, Baynam GB, Barrett NC. The relationship between fine and gross motor ability, self-perceptions and self-worth in children and adolescents. Hum Mov Sci 2006; 25(1): 65–75. doi: 10.1016/j.humov.2005.10.011.
14. Burton AW, Miller DE. Movement skill assessment. Human Kinetics 1998.
15. Quittková A. Využití standardizovaných testů chůze v dětské rehabilitaci. [online]. Dostupné z: www.fyzio-letna.cz.
16. Harvey AR. The Gross Motor Function Measure (GMFM). J Physiother 2017; 63(3): 187. doi: 10.1016/ j.jphys.2017.05.007.
17. Smith YA, Hong E, Presson C. Normative and validation studies of the Nine-Hole Peg Test with children. Percept Mot Skills 2000; 90(3 Pt 1): 823–843. doi: 10.2466/PMS.90.3.823-843.
18. Mathiowetz V, Weber K, Kashman N et al. Adult norms for the Nine-Hole Peg test of finger dexterity. Occup Ther J Res 1985; 5(1): 24–38. doi: 10.1177/153944928500500102.
19. Rybářová K, Sýkorová J, Nováková O. Česká rozšířená verze manuálu pro Nine Hole Peg Test (NHPT). Praha: Klin Rehabilitačního Lékařství 2021.
20. Okuda PMM, Pangelinan M, Capellini SA et al. Motor skills assessments: support for a general motor factor for the Movement Assessment Battery for Children-2 and the Bruininks-Oseretsky Test of Motor Proficiency-2. Trends Psychiatry Psychother 2019; 41(1): 51–59. doi: 10.1590/2237-6089-2018-0014.
21. Holický J, Musálek M. Evaluační nástroje motoriky podle vývojových norem u české populace. Stud Sport 2013; 7(2): 103–109. doi: 10.5817/StS2013-2-12.
22. Cools W, Martelaer K, Samaey C et al. Movement skill assessment of typically developing preschool children: a review of seven movement skill assessment tools. J Sports Sci Med 2009; 8(2): 154–168.
23. Psotta R, Hendl J. Movement assessment battery for children – 2nd ed.: cross-cultural comparison between 11–15 year old children from the Czech Republic and the United Kingdom. Acta Gymnica 2012; 42(3): 7–16. doi: 10.5507/ag.2012.013.
24. Brown T, Lalor A. The movement assessment battery for children – 2nd ed. (MABC-2): a review and critique. Phys Occup Ther Pediatr 2009; 29(1): 86–103. doi: 10.1080/01942630802574908.
25. Psotta R, Kraus J, Zounková I. Metoda MABC-2 pro identifikaci vývojové poruchy pohybové koordinace: zkušenosti z ověřování a implementace v praxi. Olomouc: Univerzita Palackého v Olomouci 2014.
26. Libardoni J, Formiga NS, Melo G et al. Factorial structure validation of the movement assessment battery for children in school-age children between 8 and 10 years old. Paidéia (Ribeirão Preto) 2017; 27(68): 104–112. doi: 10.1590/1982-43272768201713.
27. Deitz JC, Kartin D, Kopp K. Review of the Bruininks-Oseretsky test of motor proficiency, 2nd ed. (BOT-2). Phys Occup Ther Pediatr 2007; 27(4): 87–102. doi: 10.1080/J006v27n04_06.
28. Lam MY, Rubin DA, White E et al. Test-retest reliability of the Bruininks-Oseretsky Test of Motor Proficiency, 2nd ed. for youth with Prader-Willi syndrome. Ann Phys Rehabil Med 2018; 61(5): 355–357. doi: 10.1016/j.rehab.2018.06.001.
29. Svoboda M (ed), Krejčířová D, Vágnerová M et al. Psychodiagnostika dětí a dospívajících. Portál 2015.
30. Wang H-Y, Long I-M, Liu M-F. Relationships between task-oriented postural control and motor ability in children and adolescents with Down syndrome. Res Dev Disabil 2012; 33(6): 1792–1798. doi: 10.1016/j.ridd.2012.05.002.
31. BrownT. Structural validity of the Bruininks-Oseretsky test of motor proficiency – Second edition brief form (BOT-2-BF). Res Dev Disabil 2019; 85: 92–103 doi: 10.1016/j.ridd.2018.11.010.
32. Roeber BJ, Tober CL, Bolt DM et al. Gross motor development in children adopted from orphanage settings. Dev Med Child Neurol 2012; 54(6): 527–531. doi:10.1111/j.1469-8749.2012.04257.x.
33. American Thoracic Society. Evidence-based colloid use in the critically ill: American Thoracic Society Consensus Statement. Am J Respir Crit Care Med 2004; 170(11): 1247. doi: 10.1164/rccm.200208-909ST.
34. Vandoni M, Correale L, Puci MV et al. Six minute walk distance and reference values in healthy Italian children: a cross-sectional study. PloS One 2018; 13(10): e0205792. doi: 10.1371/journal.pone.0205792.
35. Watanabe FT, Koch VHK, Juliani RCT et al. Six-minute walk test in children and adolescents with renal diseases: tolerance, reproducibility and comparison with healthy subjects. Clinics 2016; 71(1): 22–27. doi: 10.6061/clinics/2016(01)05.
36. Fitzgerald D, Hickey C, Delahunt E et al. Six-minute walk test in children with spastic cerebral palsy and children developing typically. Pediatr Phys Ther 2016; 28(2): 192–199. doi: 10.1097/PEP.0000000000000224.
37. Dunaway Young S, Montes J, Kramer SS et al. Six‐minute walk test is reliable and valid in spinal muscular atrophy. Muscle Nerve 2016; 54(5): 836–842. doi: 10.1002/mus.25120.
38. Pereira AC, Ribeiro MG, Araújo AP et al. Timed motor function tests capacity in healthy children. Arch Dis Child 2016; 101: 147–151. doi: 10.1136/archdischild-2014-307396.
39. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39(2): 142–148. doi: 10.1111/j.15325415.1991.tb01616.x.
40. Beerse M, Lelko M, Wu J. Biomechanical analysis of the timed up-and-go (TUG) test in children with and without Down syndrome. Gait Posture 2019; 68: 409–414. doi: 10.1016/j.gaitpost.2018.12.027.
41. Bustam IG, Suriyaamarit D, Boonyong S. Timed Up and Go test in typically developing children: protocol choice influences the outcome. Gait Posture 2019; 73: 258–261. doi: 10.1016/j.gaitpost.2019.07.382.
42. Mangano GR, Valle MS, Casabona A et al. Age-related changes in mobility evaluated by the timed up and go test instrumented through a single sensor. Sensors 2020; 20(3): 719. doi: 10.3390/s20030719.
43. Itzkowitz A, Kaplan S, Doyle M et al. Timed Up and Go: reference data for children who are school age. Pediatr Phys Ther 2016; 28(2): 239–246. doi: 10.1097/PEP.0000000000000239.
44. Sheth M, Bhattad R, Shyam A et al. Timed Up and Go Test (TUG): reference data for Indian school age children. Indian J Pediatr 2021; 88(1): 72–72. doi: 10.1007/s12098-020-03353-5.
45. Williams EN, Carroll SG, Reddihough DS et al. Investigation of the timed ‘Up and go’ test in children. Dev Med Child Neurol 2005; 47(8): 518–524. doi: 10.1017/s0012162205001027.
46. Verbecque E, Schepens K, Theré J et al. The timed up and go test in children: does protocol choice matter? A systematic review. Pediatr Phys Ther 2019; 31(1): 22–31. doi: 10.1097/PEP.0000000000000558.
47. Newman MA, Hirsch MA, Peindl RD et al. Use of an instrumented dual-task timed up and go test in children with traumatic brain injury. Gait Posture 2020; 76: 193–197. doi: 10.1016/j.gaitpost.2019.12.001.
48. Hulteen RM, Barnett LM, True L et al. Validity and reliability evidence for motor competence assessments in children and adolescents: a systematic review. J Sports Sci 2020; 38(15): 1717–1798. doi: 10.1080/02640414.2020.1756674.
49. Logan SW, Robinson LE, Wilson AE et al. Getting the fundamentals of movement: a meta‐analysis of the effectiveness of motor skill interventions in children. Child Care Health Dev 2012; 38(3): 305–315. doi: 10.1111/j.1365-2214.2011.01307.x.
50. Morgan PJ, Barnett LM, Cliff DP et al. Fundamental movement skill interventions in youth: a systematic review and meta-analysis. Pediatrics 2013; 132(5): e1361–e1383. doi: 10.1542/peds.2013-1167.
51. Scheuer C, Herrmann C, Bund A. Motor tests for primary school aged children: a systematic review. J Sport Sci 2019; 37(10): 1097–1112. doi: 10.1080/02640414.2018.1544535.
52. Ré AN, Logan S, Cattuzzo MT et al. Comparison of motor competence levels on two assessments across childhood. J Sports Sci 2018; 36(1): 1–6. doi: 10.1080/02640414.2016.1276294.
53. De Luca CR, McCarthy M, Galvin J et al. Gross and fine motor skills in children treated for acute lymphoblastic leukaemia. Dev Neurorehabil 2013; 16(3): 180–187. doi: 10.3109/17518423.2013.771221.
54. Fransen J, D’Hondt E, Bourgois J et al. Motor competence assessment in children: convergent and discriminant validity between the BOT-2 Short Form and KTK testing batteries. Res Dev Disabil 2014; 35(6): 1375–1383. doi: 10.1016/j.ridd.2014.03.011.
Labels
Physiotherapist, university degree Rehabilitation Sports medicineArticle was published in
Rehabilitation and Physical Medicine
2023 Issue 2
Most read in this issue
- Conservative treatment of medial tibial stress syndrome
- Assessment of motor skills in children
- Vojta therapy is not contraindicated in pediatric hematooncology and oncology patients
- The process of ergodiagnosis and its development in the context of current social changes