Artificial neural networks and computer vision in medicine and surgery
Authors:
M. Jiřík 1,3; V. Moulisová 1; M. Hlaváč 3; M. Železný 3,4; V. Liška 1,2
Authors‘ workplace:
Biomedicínské centrum, Lékařská fakulta Univerzity Karlovy v Plzni
1; Chirurgická klinika, Fakultní nemocnice Plzeň a lékařská fakulta Univerzity Karlovy v Plzni
2; Výzkumné centrum NTIS, Fakulta aplikovaných věd, Západočeská univerzita v Plzni
3; Katedra kybernetiky, Fakulta aplikovaných věd, Západočeská univerzita v Plzni
4
Published in:
Rozhl. Chir., 2022, roč. 101, č. 12, s. 564-570.
Category:
Review
doi:
https://doi.org/10.33699/PIS.2022.101.12.564–570
Overview
Introduction: Artificial neural networks are becoming an essential technology in data analysis, and their influence is starting to permeate the field of medicine. Experimental surgery has been a long-term subject of study of our lab; this is naturally reflected in our interest in other areas of modern technologies including artificial neural networks and their advancements. In the current issue, we would like to explore this aspect of technical progress. The main goal is to critically evaluate the strengths and weaknesses of artificial neural network technology concerning its use in clinical and experimental surgery.
Methods: The article is focused on in-silico modeling, particularly on the potential of neural networks in terms of image data processing in medicine. The text briefly summarizes the historical development of deep learning neural networks and their basic principles. Furthermore, basic taxonomy tasks are presented. Finally, potential learning problems and possible solutions are also mentioned.
Results: The article points out various possible uses of artificial neural networks in biological applications. Several biomedical applications of artificial neural networks are used to describe the division and principles of the most common tasks of machine learning and deep learning such as classification, detection, and segmentation.
Conclusion: The application of artificial neural network methods in medicine and surgery offers a considerable potential; by learning directly from the data, they make it possible to avoid lengthy and subjective setting of parameters by an expert engineer. Nevertheless, the use of an unbalanced dataset can lead to unexpected, although traceable errors. The solution is to collect a dataset large enough to enable both learning and verification of proper functionality.
Keywords:
deep learning – machine learning – artificial neural network – dataset
Sources
1. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 1980;36(4):193–202. doi:10.1007/ BF00344251.
2. Lo SCB, Lou SLA, Lin JS, et al. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Transactions on Medical Imaging 1995;14(4):711–718.
3. LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998;86(11):2278–2323. doi:10.1109/5.726791.
4. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 2012;25.
5. Antony J, McGuinness K, O’Connor NE, et al. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. Proceedings – International Conference on Pattern Recognition 2016;0:1195–1200. doi:10.1109/ ICPR.2016.7899799.
6. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Medical Image Analysis 2017;42(1995):60–88. doi:10.1016/j.media. 2017.07.005.
7. Ravi D, Wong C, Deligianni F, et al. Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics 2017;21(1):4–21. doi:10.1109/ JBHI.2016.2636665.
8. Rosenblatt F. The perceptron – a perceiving and recognizing automaton. Report 85, Cornell Aeronautical Laboratory 1957:460–461.
9. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Communication of the ACM 2017;60(6). doi:10.1145/3065386.
10. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323(6088): 533–536. doi:10.1038/323533a0.
11. O’Mahony N, Campbell S, Carvalho A, et al. Deep learning vs. traditional computer vision. In: Arai K, Kapoor S, editors. Advances in computer vision. Cham, Springer International Publishing 2020:943. doi:10.1007/978-3-030-17795-9_10.
12. Haggenmüller S, Maron RC, Hekler A, et al. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. European Journal of Cancer 2021;156:202–216. doi:10.1016/j. ejca.2021.06.049.
13. Naeem A, Farooq MS, Khelifi A, et al. Malignant melanoma classification using deep learning: Datasets, performance measurements, challenges and opportunities. IEEE Acces 2020;8:110575–110594. doi:10.1109/ACCESS.2020.3001507.
14. Wen D, Khan SM, Xu AJ, et al. Characteristics of publicly available skin cancer image datasets: a systematic review. The Lancet Digital Health 2022;4(1):e64–e74. doi:10.1016/S2589-7500(21)00252-1.
15. Kassem MA, Hosny KM, Fouad MM. Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Acces 2020;8:114822–114832. doi:10.1109/ ACCESS.2020.3003890.
16. Carney M, Webster B, Alvarado I, et al. Teachable machine: Approachable webbased tool for exploring machine learning classification. Conference on Human Factors in Computing Systems – Proceedings 2020. doi: 10.1145/3334480.3382839.
17. Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Transactions on Medical Imaging 2016; 35(5):1182–1195. doi:10.1109/TMI.2016.2528129.
18. Krejčí J, Straka O, Vyskočil J, et al. Feature- based multi-object tracking with maximally one object per class. FUSION 2022.
19. Wang Z, Majewicz Fey A. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. International Journal of Computer Assisted Radiology and Surgery 2018; 13(12):1959–1970. doi:10.1007/ s11548-018-1860-1.
20. Luongo F, Hakim R, Nguyen JH, et al. Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery. Surgery (United States) 2021;169(5):1240–1244. doi:10.1016/j.surg.2020.08.016.
21. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention (MICCAI), vol. 9351, Springer 2015.
22. Jirik M, Gruber I, Moulisova V, et al. Semantic segmentation of intralobular and extralobular tissue from liver scaffold H&E images. Sensors (Switzerland) 2020;20(24):1–12. doi:10.3390/ s20247063.
23. Moulisová V, Jiřík M, Schindler C, et al. Novel morphological multi-scale evaluation system for quality assessment of decellularized liver scaffolds. Journal of Tissue Engineering 2020;11:2041731420921121. doi:10. 1177/2041731420921121.
24. Jiřík M, Hácha F, Gruber I, et al. Why use position features in liver segmentation performed by convolutional neural network. Frontiers in Physiology 2021;12(October):1–9. doi:10.3389/ fphys.2021.734217.
25. Brunet JN, Mendizabal A, Petit A, et al. Physics-based deep neural network for augmented reality during liver surgery. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 2019; 11768 LNCS:137–145. doi:10.1007/978-3-030-32254-0_16.
26. Geirhos R, Jacobsen JH, Michaelis C, et al. Shortcut learning in deep neural networks Nature Machine Inteligence 2020;666–673.
27. Zech JR, Badgeley MA, Liu M, et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS Medicine 2018;15(11):1–17. doi:10.1371/journal.pmed.1002683.
28. Jalali A, Lonsdale H, Do N, et al. Deep learning for improved risk prediction in surgical outcomes. Scientific Reports 2020;10(1),9289. doi:10.1038/s41598- 020-62971-3.
29. He Y, Guo J, Ding X, et al. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images. European Radiology 2019; 29(10):5441–5451. doi:10.1007/ s00330-019-06082-2.
30. Ghaednia H, Fourman MS, Lans A, et al. Augmented and virtual reality in spine surgery, current applications and future potentials. The Spine Journal 2021;21(10):1617–1625. doi:10.1016/J. SPINEE.2021.03.018.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2022 Issue 12
Most read in this issue
- Domestic pig head and neck arteries from the viewpoint of imaging methods and experimental surgery
- Chylothorax treatment with thoracic duct embolization
- Introducing in vivo pancreatic cancer models for the study of new therapeutic regimens
- Permanent intravenous access in experimental surgery – our experience